Dosimetric Comparison of Radiation Treatment Techniques for Breast Cancer : 3D-CRT, IMRT and VMAT

유방암 방사선치료 기법에 따른 선량 비교 : 3차원 입체조형치료, 세기 변조 방사선치료, 입체세기조절회전 방사선치료

  • Lee, Bo-Ram (Department of Bio-convergence Engineering, College of Health Science, Korea University) ;
  • Lee, Sun-Young (Department of Radiation Oncology, Yusung Sun Medical) ;
  • Yoon, Myong-Geun (Department of Bio-convergence Engineering, College of Health Science, Korea University)
  • 이보람 (고려대학교 보건과학대학 바이오융합공학과) ;
  • 이선영 (유성선병원) ;
  • 윤명근 (고려대학교 보건과학대학 바이오융합공학과)
  • Received : 2013.07.31
  • Accepted : 2013.09.09
  • Published : 2013.09.30

Abstract

The purpose of this study is to compare method in the treatment of breast cancer using dose index. And, it is to find the optimized treatment technique to the patient. The phantom filled with tissue-equivalent material were used simulation and treatment as techniques of 3D-CRT, IMRT, VMAT was planned using Eclipse v10. By using HI(homogeneity index), CI(Conformity index), OED(Organ equivalent dose), EAR(Excess Absolute Risk), were assessed for each treatment plans. HI and CI of 3D-CRT, IMRT, VMAT were calculated 16.89, 11.21, 9.55 and 0.59, 0.61, 0.83. The organ average doses of Lt lung, Rt lung, liver, heart, esophagus, cord, Lt breast, trachea and stomach were 0.01 ~ 2.02 Gy, 0.36 ~ 5.01 Gy, 0.25 ~ 2.49 Gy, 0.14 ~ 6.92 Gy, 0.03 ~ 2.02 Gy, 0.01 ~ 1.06 Gy, 0.25 ~ 6.08 Gy, 0.08 ~ 0.59 Gy, 0.01 ~ 1.34 Gy, respectively. The OED, EAR of the IMRT and VMAT show higher than 3D-CRT. As the result of this study, we could confirm being higher dose index(HI, CI) in IMRT and VMAT than 3D-CRT, but doses of around normal organs was higher IMRT, VMAT than 3D-CRT.

본 연구의 목적은 유방암 치료에 사용되는 다양한 첨단방사선치료법을 선량비교인자들을 이용하여 비교분석하고 이 결과를 이용하여 환자에 가장 적합한 치료방법을 찾기 위함이다. 인체밀도와 유사하게 제작된 모형팬텀을 이용하여 시뮬레이션을 진행하였고 Eclipse v10 소프트웨어를 이용하여 3차원 입체조형치료, 세기 변조 방사선치료, 입체세기조절회전 방사선치료 세 가지 치료계획을 수립하였다. 각 치료계획을 평가하기 위하여 균일지수, 순응도, 장기등가선량(OED), 초과절대위험률(EAR) 등을 이용하였다. 균일지수 값은 3차원 입체조형치료, 세기 변조 방사선치료, 입체세기조절회전 방사선치료에서 16.89, 11.21, 9.55, 순응도는 0.59, 0.61, 0.83 으로 계산되었다. 사용된 3가지 치료법의 평균선량은 왼쪽 폐 0.01 ~ 2.02 Gy, 오른쪽 폐 0.36 ~ 5.01 Gy, 간 0.25 ~ 2.49 Gy, 심장 0.14 ~ 6.92 Gy, 식도 0.03 ~ 2.02 Gy, 척수 0.01 ~ 1.06 Gy, 왼쪽 가슴 0.25 ~ 6.08 Gy, 기관 0.08 ~ 0.59 Gy, 위 0.01 ~ 1.34 Gy 의 범위로 나타났다. 장기등가선량(OED)와 초과절대위험률(EAR)은 모든 장기에서 세기 변조 방사선치료와 입체세기조절회전 방사선치료방법이 3차원 입체조형치료 보다 높게 나타났다. 이 연구의 결과로서, 우리는 선량분포지수(균일지수, 순응도)는 세기 변조 방사선치료, 입체세기조절회전 방사선치료가 3차원 입체조형치료 보다 좋을 수 있지만 주변 정상장기에 들어가는 선량은 3차원 입체조형치료보다 높다는 것을 확인할 수 있었다.

Keywords

References

  1. Hall E. J, Intensity modulated radiation therapy, protons and the risk of secondcancers. Int J Radiat Oncol Biol Phys. 65(1), 1-7, 2006 https://doi.org/10.1016/j.ijrobp.2006.01.027
  2. Followill D, Geis P, Boyer A. Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int J Radiat Oncol Biol Phys. 38, 667-672, 1997 https://doi.org/10.1016/S0360-3016(97)00012-6
  3. Verellen D, Vanhavere F. Risk assessment of radiation induced malignancies based on whole-body dose equivalent estimates for IMRT in the head and neck region. Radiother Oncol. 53, 199-203, 1999 https://doi.org/10.1016/S0167-8140(99)00079-1
  4. Hall EJ, Wuu C. Radiation-induced second cancers: The impact of 3D-CRT andIMRT. Int J Radiat Oncol Biol Phys. 56, 83-88, 2003 https://doi.org/10.1016/S0360-3016(03)00073-7
  5. Kry SF, Salehpour M, Followill DS, et al. The calculated risk of fatal secondarymalignancies from intensity-modulated radiation therapy. Int J Radiat Oncol BiolPhys. 62, 1195-1203, 2005 https://doi.org/10.1016/j.ijrobp.2005.03.053
  6. Kry SF, Salehpour M, Followill DS, et al. Out-of-field photon and neutron doseequivalents from step-and-shoot intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 62, 1195-1203, 2005 https://doi.org/10.1016/j.ijrobp.2005.03.053
  7. Fontenot J. D, Lee A. K, Newhauser WD. Risk of secondary malignant neoplasms from proton therapy and intensity-modulated x-ray therapy for early-stageprostate cancer. Int J Radiat Oncol Biol Phys. 74, 616-622, 2007
  8. Donovan EM, James H, Bonora M, et al. Second cancer incidence risk estimates using BEIR VII models for standard and complex external beam radiotherapy for early breast cancer. Med Phys. 39(10), 5814-5824, 2012 https://doi.org/10.1118/1.4748332
  9. Schneider U, Walsh L. Cancer risk estimates from the combined JapaneseA-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Radiat Environ Biophys. 47(2), 253-263, 2008 https://doi.org/10.1007/s00411-007-0151-y
  10. Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958- 1998. Radiat Res. 168, 1-64, 2007 https://doi.org/10.1667/RR0763.1
  11. Preston DL, Pierce DA, Shimizu Y, et al. Effects of recent changes in Atomicbomb survivor dosimetry on cancer mortality risk estimated. Radiat Res. 162,377-389, 2004 https://doi.org/10.1667/RR3232
  12. Walsh L, Ruhm W, Kellerer AM. Cancer risk estimates for X-rays with regard to organ specific doses, part I: all solid cancers combined. Radiat Environ Biophys. 43, 145-151, 2004 https://doi.org/10.1007/s00411-004-0248-5
  13. Walsh L, Ruhm W, Kellerer AM. Cancer risk estimates for X-rays with regard to organ specific doses, part II: site specific solid cancers. Radiat Environ Biophys. 43, 225-231, 2004 https://doi.org/10.1007/s00411-004-0263-6
  14. Schneider U, Zwahlen D, Ross D, et al. Estimation of radiation-inducedcancer from three-dimensional dose distributions: Concept of organ equivalent dose. Int J Radiat Oncol Biol Phys. 61(5), 1510-1515, 2005 https://doi.org/10.1016/j.ijrobp.2004.12.040
  15. Yoon MG, Shin DH, Kim JW, et al. Craniospinal irradiation techniques: a dosimetric comparison of proton beams with standard and advanced photonradiotherapy. Int J Radiat Oncol Biol Phys. 81(3), 637-646, 2011 https://doi.org/10.1016/j.ijrobp.2010.06.039
  16. Schneider U, Kaser-Hotz. Radiation risk estimates after radiotherapy: Application of the organ equivalent dose concept to plateau dose-responserelationships. Radiat Environ Biophys. 44, 235-239, 2005 https://doi.org/10.1007/s00411-005-0016-1
  17. Wu Q, Mohan R, Morris M, et al. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: Dosimetric results. Int J Radiat Oncol Biol Phys. 56(2), 573- 585, 2003
  18. Murthy K, Shukeili K, Kumar S, et al. Evaluation of dose coverage to target volume and normal tissue sparing in the adjuvant radiotherapy of gastric cancers: 3D-CRT compared with dynamic IMRT. Biomed Imaging Interv J. 6(3),e29, 2010
  19. Schneider U, Lomax A, Timmermann B. Second cancers in children treated withmodern radiotherapy techniques. Radiother Oncol. 89(2), 135-140, 2008 https://doi.org/10.1016/j.radonc.2008.07.017