DOI QR코드

DOI QR Code

Application of Image Processing to Determine Size Distribution of Magnetic Nanoparticles

  • Phromsuwan, U. (Magnet Laboratory, School of Science, Walailak University) ;
  • Sirisathitkul, C. (Magnet Laboratory, School of Science, Walailak University) ;
  • Sirisathitkul, Y. (School of Informatics, Walailak University) ;
  • Uyyanonvara, B. (School of Information, Computer and Communication Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University) ;
  • Muneesawang, P. (Department of Electrical and Computer Engineering, Faculty of Engineering, Naresuan University)
  • Received : 2012.05.31
  • Accepted : 2012.12.27
  • Published : 2013.09.30

Abstract

Digital image processing has increasingly been implemented in nanostructural analysis and would be an ideal tool to characterize the morphology and position of self-assembled magnetic nanoparticles for high density recording. In this work, magnetic nanoparticles were synthesized by the modified polyol process using $Fe(acac)_3$ and $Pt(acac)_2$ as starting materials. Transmission electron microscope (TEM) images of as-synthesized products were inspected using an image processing procedure. Grayscale images ($800{\times}800$ pixels, 72 dot per inch) were converted to binary images by using Otsu's thresholding. Each particle was then detected by using the closing algorithm with disk structuring elements of 2 pixels, the Canny edge detection, and edge linking algorithm. Their centroid, diameter and area were subsequently evaluated. The degree of polydispersity of magnetic nanoparticles can then be compared using the size distribution from this image processing procedure.

Keywords

References

  1. N. Bonnet, Micron 35, 635 (2004). https://doi.org/10.1016/j.micron.2004.04.006
  2. S. B. Wang, Y. Z. Fang, H. K. Jia, L. A. Li, Z. Y. Wang, and S. J. Zhang, Opt. Laser Eng. 48, 1140 (2010). https://doi.org/10.1016/j.optlaseng.2009.12.018
  3. A. De Santis, O. Di Bartolomeo, D. Iacoviello, and F. Iacoviello, J. Mater. Process. Technol. 196, 292 (2008). https://doi.org/10.1016/j.jmatprotec.2007.05.056
  4. A. Guha, C. Amarnath, S. Pateria, and R. Mittal, J. Text. I. 101, 214 (2010). https://doi.org/10.1080/00405000802346412
  5. K. Mogireddy, V. Devabhaktuni, A. Kumar, P. Aggarwal, and P. Bhattacharya, J. Hazard. Mater. 186, 1254 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.129
  6. Y. Midoh, K. Nakamae, and H. Fujioka, Meas. Sci. Technol. 18, 579 (2007). https://doi.org/10.1088/0957-0233/18/3/006
  7. K. S. Sim, H. Y. Ting, M. A. Lai, and C. P. Tso, J. Microsc.- Oxford 234, 243 (2009). https://doi.org/10.1111/j.1365-2818.2009.03167.x
  8. V. Ortalan, M. Herrera, D. G. Morgan, and N. D. Browning, Ultramicroscopy 110, 67 (2009). https://doi.org/10.1016/j.ultramic.2009.09.007
  9. T. R. Wojcik and D. Krapf, IEEE Photonic. J. 3, 337 (2011). https://doi.org/10.1109/JPHOT.2011.2129503
  10. S. Sun, Adv. Mater. 18, 393 (2006). https://doi.org/10.1002/adma.200501464
  11. U. Phromsuwan, C. Sirisathitkul, Y. Sirisathitkul, and C. Sriphung, Int. J. Phys. Sci. 7, 1959 (2012).
  12. G. H. Woehrle, J. E. Hutchison, S. Ozkar, and R. G. Finke, Turk. J. Chem. 30, 1 (2006).
  13. K. Chokprasombat, C. Sirisathitkul, P. Harding, S. Chandarak, and R. Yimnirun, J. Nanomat. 758429 (2012).