DOI QR코드

DOI QR Code

배추 SSR 마커를 이용한 무의 육성 계통 및 수집종의 유전적 다양성 분석

Analysis of the Genetic Diversity of Radish Germplasm through SSR Markers Derived from Chinese Cabbage

  • Park, Suhyoung (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Choi, Su Ryun (Department of Horticulture, Chungnam National University) ;
  • Lee, Jung-Soo (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Nguyen, Van Dan (Department of Horticulture, Chungnam National University) ;
  • Kim, Sunggil (Department of Plant Biotechnology, Chonnam National University) ;
  • Lim, Yong Pyo (Department of Horticulture, Chungnam National University)
  • 투고 : 2012.07.27
  • 심사 : 2013.04.02
  • 발행 : 2013.08.31

초록

국립원예특작과학원에서는 무의 품종 육성 기반 확장을 위해 다양한 무 품종을 수집하여 재배한 후 원예적 특성이 양호한 자원을 선발하여 계통으로 육성하는 작업을 1980년대 초반부터 지속적으로 수행하여 왔다. 유전적 다양성은 작물의 개량에 있어 주요 소재이기에 자원의 수집을 통한 변이의 확보는 매우 중요하다. 자원 수집과 더불어 확보한 자원간의 다양성 정도를 측정함으로써 자원의 활용도를 높이고 자원확보의 방향성을 재고하는데 도움을 줄 수도 있다. 이런 연구를 위하여 이미 배추에서 개발된 SSR 마커를 이용하여 계통분류학상 가까운 관계에 있는 무에 적용이 가능한지를 검토하기 위해 본 실험을 실시하였다. 무 육성 계통과 도입자원 중에서 44점의 보유 유전자원을 재료로 하여 22종의 선발한 마커로 유전형을 분석하였으며, 이 중에서 'cnu_m139'와 'cnu_m289' 등이 다형성 검증에 유용한 마커임을 확인할 수 있었다. 무 유전자원의 유전적 유연관계 분석 결과, 무는 지역적 유래에 따라 차이를 보였으며, 품종 육성 연도에 따라 일부 그룹을 형성함을 알 수 있어, 최근 육성되고 있는 품종들과 기존의 품종과의 차이를 보여주는 것으로 나타났다. 또한 각 그룹에 해당하는 계통들의 특성을 제시함으로써 차후 연구결과의 활용도를 높이고자 하였다. 비교적 적은 수의 마커로 분석했음에도 30년 이전에 육성종과 근래에 육성한 2000년대에 육성종을 구분하고, 한 그룹 내에서 비교적 형태적으로 유사한 개체들이 그룹을 구성하는 대부분을 나타낸 결과는 SSR 마커가 무에 성공적으로 적용 가능함을 시사한다고 할 수 있다. 본 연구결과를 통해 배추에서 개발한 SSR 마커를 이용하여 무에 대한 유전적 다양성 및 유연관계 분석(유전자원 식별)에 적용이 가능한 것으로 판단된다.

Since the early 1980s, the National Institute of Horticultural & Herbal Sciences has been breeding and collecting diverse radish breeds to select those samples with better horticultural characteristics, to ultimately expand and develop as good radish produce. Genetic diversity is a crucial factor in crop improvement and therefore it is very important to obtain various variations through sample collection. The collected samples were compared with one another in order to assess the level of diversity among the collections, and this procedure allowed for increased application of the gathered resources and aided in determining the direction to secure further samples. Towards this end, this experiment was conducted in order to examine whether the SSR markers derived from Chinese cabbage samples could be transferred to the radish samples. Among the radish breeding lines and introduced resources, 44 lines were used as materials to analyze the genotype using 22 SSR markers selected. As a result, the analysis showed that among all the selected markers, 'cnu_m139' and 'cnu_m289' were the most useful markers for diversity evaluation. The genetic relationship of the radish genetic resources showed that the geographic origins affected the diversity. Furthermore, the different types of radish groups were also determined by the year they were bred. This result demonstrated that there are differences between the older radish breeds and the more recently developed radish breeds. Even though a relatively small number of markers were used in the analysis, it was possible to distinguish whether the radish was bred 30 years ago or in the 2000s, and that the similar physical shapes comprised a particular group, showed that the SSR markers can indeed be successfully applied to to study the diversity within radish breeding lines. Through the results of this study, it can be concluded that the SSR marker developed for the Chinese cabbage can be applied to examine the genetic diversity and analyze the relationship (genetic resource determination) of radish.

키워드

참고문헌

  1. Barrett, B.A. and K.K. Kidwell. 1998. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Corp Sci. 38:1261-1271. https://doi.org/10.2135/cropsci1998.0011183X003800050025x
  2. Choi, W.J., S.A. Lee, S.M. Yoo, S.S. Lee, J.H. Kang, and H.C. Ko. 2008. Genetic relationship by RAPD analysis of Korean wild radish and local cultivars in radish. Kor. J. Hort. Sci. Technol. 26:427-431.
  3. Chowdhury, M.A., B. Vandenberg, and T. Warkentin. 2002. Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica 127:317-325. https://doi.org/10.1023/A:1020366819075
  4. Cooke, R.J., G.M.M. Bredencijer, M.W. Ganal, R. Peeters, P. Issac, S. Randell, J. Jacson, M.S. Roder, V. Kozun, K. Wendehake, T. Areschchenkova, M. Dijcks, D. Laboric, L. Bertrand, and B. Vosman. 2003. Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica 132: 331-341. https://doi.org/10.1023/A:1025046919570
  5. Dillmann, C., A. Bar-Hen, D. Guerin, A. Characosset, and A. Murigneux. 1997. Comparison of RFLP and morphological distances between Zea Mays L. inbred lines. Consequences for germplasm protection purposes. Theor. Appl. Cenet. 95: 92-102. https://doi.org/10.1007/s001220050536
  6. Huh, M.K. and O. Ohnishi. 2002. Genetic diversity and genetic relationships of East Asian natural populations of wild radish revealed by AFLP. Breeding Sci. 52:79-88. https://doi.org/10.1270/jsbbs.52.79
  7. Ishii, T., Y. Xu, and S.R. McCouch. 2001. Nuclear-and chloroplast microsatellite variation in A-genome species of rice. Genome 44:658-666. https://doi.org/10.1139/g01-044
  8. Jewell, E., A. Robinson, D. Savage, T. Erwin, C.G. Love, G.A. Lim, X. Li, J. Batley, G.C. Spangenberg, and D. Edwards. 2006. SSR Primer and SSR taxonomy tree: biome SSR discovery. Nucleic Acids Res. 34:W656-W659. https://doi.org/10.1093/nar/gkl083
  9. Kim, H., S.R. Choi, J. Bae, C.P. Hong, S.Y. Lee, M. Hossain, V.D. Nguyen, M. Jin, B.S. Park, J. Bang, I. Bancroft, and Y.P. Lim. 2009. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics 10:432-446. https://doi.org/10.1186/1471-2164-10-432
  10. Kim, J.S., T.Y. Chung, G.J. King, M. Jin, T.J. Yang, Y.M. Jin, H.I. Kim, and B.S. Park. 2006. A sequence-tagged linkage map of Brassica rapa. Genetics 174:29-39. https://doi.org/10.1534/genetics.106.060152
  11. Kwon, S.J., D.H. Kim, M.H. Lim, Y. Long, J.L. Meng, K.B. Lim, J.A. Kim, J.S. Kim, M. Jin, H.I. Kim, S.N. Ahn, S.R. Wessler, T.J. Yang, and B.S. Park. 2007. Terminal repeat retrotransposon in miniature (TRIM) as DNA markers in Brassica relatives. Mol. Genet. Genomics 278:361-370. https://doi.org/10.1007/s00438-007-0249-6
  12. Kwon, S.J., S.N. Ahn, H.C. Hong, Y.K. Kim, H.G. Hwang, H.C. Choi, and H.P. Moon. 1999. Genetic diversity of Korean japonica rice cultivars. Korean J. Breed Sci. 21:268-275.
  13. Kwon, Y.S., J.Y. Mun, Y.S. Kwon, D.Y. Park, H.M. Yun, I.H. Song, and S.I. Seung. 2003. AFLP analysis for cultivar discrimination in radish and Chinese cabbage. Kor. J. Breed. Sci. 35:319-328.
  14. Lefebvre, V., B. Goffinet, J.C. Chauvet, B. Caromel, P. Signoret, R. Brand, and A. Palloix. 2001. Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes: comparison of AFLP, RAPD, and phenotypic data. Theor. Appl. Genet. 102:741-750. https://doi.org/10.1007/s001220051705
  15. Li, M., C. Zhang, W. Qian, and J. Meng. 2007. Genetic diversity of Brassica species revealed by amplified fragment length polymorphism and simple sequence repeat markers. Hort. Environ. Biotechnol. 48:9-15.
  16. Li X., N. Ramchiary, S.R. Choi, D. Van Nguyen, M.J. Hossain, H.K. Yang, and Y.P. Lim. 2010. Development of a high density integrated reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor. Appl. Genet. 53:939-947.
  17. Lu, N., K. Yamane, and O. Ohnishi. 2008. Genetic diversity of cultivated and wild radish and phylogenetic relationships among Raphanus and Brassica species revealed by the analysis of trnK/matK sequence. Breeding Sci. 58:15-22. https://doi.org/10.1270/jsbbs.58.15
  18. Ministry for food, agriculture, forestry and fisheries (MIFAFF). 2012, Production and status of greenhouse and open-field in vegetables. MIFAFF, Gwacheon, Korea.
  19. McCouch, S.R., X. Chen, O. Panaud, S. Temnykh, Y. Xu, Y.G. Cho, N. Huang, T. Lshii, and M.W. Blair. 1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol. Biol. 35:89-99. https://doi.org/10.1023/A:1005711431474
  20. Mun, J.H., S.J. Kwon, and B.S. Park. 2010. The strategy and current status of Brassica rapa genome project. Plant Biotechnol. 37:153-165. https://doi.org/10.5010/JPB.2010.37.2.153
  21. Mun, J.H., S.J. Kwon, T.J. Yang, Y.J. Seol, M. Jin, J.A. Kim, M.H. Lim, J.S. Kim, S. Baek, B. Choi, H.J. Yu, D.S. Kim, N. Kim, K. Lim, S.I. Lee, Y. Lim, I. Bancroft, J.H. Hahn, and B. Park. 2009. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol. 10:R111.1-R111.18.
  22. Ohsako, T., M. Hirai, and M. Yamabuki. 2010. Spatial structure of microsatellite variability within and among populations of wild radish Raphanus sativus L. var. hortensis Backer f. raphanistroides Makino (Brassicaceae) in Japan. Breeding Sci. 60:195-202. https://doi.org/10.1270/jsbbs.60.195
  23. Powell, W., C.M. Gordon, and J. Provan. 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1:215-222. https://doi.org/10.1016/1360-1385(96)86898-1
  24. Riaz, A., G. Li, Z. Quresh, M.S. Swati, and C.F. Quiros. 2001. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breeding 120:411-415. https://doi.org/10.1046/j.1439-0523.2001.00636.x
  25. Richards, R. and G.R. Sutherland. 1994. Simple repeat DNA is not replicated simply. Nat. Genet. 6:114-116. https://doi.org/10.1038/ng0294-114
  26. Rohlf, E.J. 1993. NTSYS-pc: Numerical taxonomy and multivariate analysis system, version 1.80. Applied Biostatistics Inc., Setauket, New York, USA.
  27. Sneath, P.H.A. and R.R. Sokal. 1973. Numerical taxonomy. W. H. Freeman and Company, San Francisco, USA.
  28. Swabe, K., H. Iketani, T. Nunome, T. Kage, and M. Hirai. 2002. Isolation and characterization of microsatellite in Brassica rapa L. Theor. Appl. Genet. 104:1092-1098. https://doi.org/10.1007/s00122-002-0875-7
  29. Tam, S.M., C. Mhiri, A. Vogelaar, M. Kerkveld, S.R. Pearce, and M.A. Grandbastien. 2005. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor. Appl. Genet. 110:819-831. https://doi.org/10.1007/s00122-004-1837-z
  30. Ramchiary, N., V.D. Nguyen, X. Li, C.P. Hong, V. Dhandapani, S.R. Choi, G. Yu, Z.Y. Piao, and Y.P. Lim. 2011. Genic microsatellite markers in Brassica rapa: Development, characterization, mapping, and their utility in other cultivated and wild Brassica relatives. DNA Res. 18:305-320. https://doi.org/10.1093/dnares/dsr017
  31. Tommasini, L., J. Bately, G.M. Arnold, R.J. Cooke, P. Monini, D. Lee, J.R. Law, C. Lowe, C. Moule, M. Trick, and K.J. Edwardw. 2003. The development of multiplex simple sequense repeat markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor. Appl. Genet. 2003:1091-1101.
  32. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Lee, M. Hornes, A. Friters, J. Pot, J. Paleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting Nucl. Acids Res. 23:4407-4414. https://doi.org/10.1093/nar/23.21.4407
  33. Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, Y. Bai, J.H. Mun, I. Bancroft, F. Cheng, S. Huang, X. Li, W. Hua, J. Wang, X. Wang, M. Freeling, J.C. Pires, A.H. Paterson, B. Chalhoub, B. Wang, A. Hayward, A.G. Sharpe, B.S. Park, B. Weisshaar, B. Liu, B. Li, B. Liu, C. Tong, C. Song, C. Duran, C. Peng, C. Geng, C. Koh, C. Lin, D. Edwards, D. Mu, D. Shen, E. Soumpourou, F. Li, F. Fraser, G. Conant, G. Lassal, G.J. King, G. Bonnema, H. Tang, H. Wang, H. Belcram, H. Zhou, H. Hirakawa, H. Abe, H. Guo, H. Wang, H. Jin, I.A. Parkin, J. Batley, J.S. Kim, J. Just, J. Li, J. Xu, J. Deng, J.A. Kim, J. Li, J. Yu, J. Meng, J. Wang, J. Min, J. Poulain, J. Wang, K. Hatakeyama, K. Wu, L. Wang, L. Fang, M. Trick, M.G. Links, M. Zhao, M. Jin, N. Ramchiary, N. Drou, P.J. Berkman, Q. Cai, Q. Huang, R. Li, S. Tabata, S. Cheng, S. Zhang, S. Zhang, S. Huang, S. Sato, S. Sun, S.J. Kwon, S.R. Choi, T.H. Lee, W. Fan, X. Zhao, X. Tan, X. Xu, Y. Wang, Y. Qiu, Y. Yin, Y. Li, Y. Du, Y. Liao, Y. Lim, Y. Narusaka, Y. Wang, Z. Wang, Z. Li, Z. Wang, Z. Xiong, and Z. Zhang. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:1035-1038. https://doi.org/10.1038/ng.919
  34. Warwick, S.I., R.K. Gugel, T. Mcdonald, and K.C. Falk. 2006. Genetic variations of Ethiopian mustard (Brassica carinata A. Braun) germ plasm in western Canada. Genetic Res. Crop Evolution 53:297-312. https://doi.org/10.1007/s10722-004-6108-y
  35. Williams, J., A. Kubelik, K. Livak, J. Rafalski, and S. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 15:6531-6535.
  36. Yamagishi, H. and T. Terachi. 2003. Multiple origins of cultivated radishes as evidenced by a comparison of the structural variations in mitochondrial DNA of Raphanus. Genome 46:89-94. https://doi.org/10.1139/g02-110
  37. Yamane, K. 2004. Assessment of cytoplasmic polymorphisms by PCR-RFLP of the mitochondrial orfB region in wild and cultivated radishes. Plant Breeding 123:141-144. https://doi.org/10.1046/j.1439-0523.2003.00899.x
  38. Yamane, K., N. Lü, and O. Ohnishi. 2005. Chloroplast DNA variations of cultivated radish and its wild relatives. Plant Sci. 168:627-634. https://doi.org/10.1016/j.plantsci.2004.09.022
  39. Zhang, J.F., Y. Lu, H. Adragna, and E. Hughs, 2005. Genetic improvement of New Mexico acala cotton germ plasm and their genetic diversity. Crop Sci. 45:2363-2373. https://doi.org/10.2135/cropsci2005.0140
  40. Zhao, J., X. Wang, B. Deng, P. Lou, J. Wu, R. Sun, Z. Xu, J. Vromans, M. Koornneef, and G. Bennema. 2005. Genetic relationship within Brassica rapa as inferred from AFLP fingerprints. Theor. Appl. Genet. 110:1301-1314. https://doi.org/10.1007/s00122-005-1967-y

피인용 문헌

  1. Genetic variations and evolutionary relationships among radishes (Raphanus sativus L.) with different flesh colors based on red pigment content, karyotype and simple sequence repeat analysis vol.16, pp.50, 2015, https://doi.org/10.5897/AJB2015.14911