Browse > Article
http://dx.doi.org/10.7235/hort.2013.12148

Analysis of the Genetic Diversity of Radish Germplasm through SSR Markers Derived from Chinese Cabbage  

Park, Suhyoung (Vegetable Research Division, National Institute of Horticultural & Herbal Science)
Choi, Su Ryun (Department of Horticulture, Chungnam National University)
Lee, Jung-Soo (Vegetable Research Division, National Institute of Horticultural & Herbal Science)
Nguyen, Van Dan (Department of Horticulture, Chungnam National University)
Kim, Sunggil (Department of Plant Biotechnology, Chonnam National University)
Lim, Yong Pyo (Department of Horticulture, Chungnam National University)
Publication Information
Horticultural Science & Technology / v.31, no.4, 2013 , pp. 457-466 More about this Journal
Abstract
Since the early 1980s, the National Institute of Horticultural & Herbal Sciences has been breeding and collecting diverse radish breeds to select those samples with better horticultural characteristics, to ultimately expand and develop as good radish produce. Genetic diversity is a crucial factor in crop improvement and therefore it is very important to obtain various variations through sample collection. The collected samples were compared with one another in order to assess the level of diversity among the collections, and this procedure allowed for increased application of the gathered resources and aided in determining the direction to secure further samples. Towards this end, this experiment was conducted in order to examine whether the SSR markers derived from Chinese cabbage samples could be transferred to the radish samples. Among the radish breeding lines and introduced resources, 44 lines were used as materials to analyze the genotype using 22 SSR markers selected. As a result, the analysis showed that among all the selected markers, 'cnu_m139' and 'cnu_m289' were the most useful markers for diversity evaluation. The genetic relationship of the radish genetic resources showed that the geographic origins affected the diversity. Furthermore, the different types of radish groups were also determined by the year they were bred. This result demonstrated that there are differences between the older radish breeds and the more recently developed radish breeds. Even though a relatively small number of markers were used in the analysis, it was possible to distinguish whether the radish was bred 30 years ago or in the 2000s, and that the similar physical shapes comprised a particular group, showed that the SSR markers can indeed be successfully applied to to study the diversity within radish breeding lines. Through the results of this study, it can be concluded that the SSR marker developed for the Chinese cabbage can be applied to examine the genetic diversity and analyze the relationship (genetic resource determination) of radish.
Keywords
genetic resource; polymorphism; Raphanus sativus; transferability;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Yamagishi, H. and T. Terachi. 2003. Multiple origins of cultivated radishes as evidenced by a comparison of the structural variations in mitochondrial DNA of Raphanus. Genome 46:89-94.   DOI   ScienceOn
2 Yamane, K. 2004. Assessment of cytoplasmic polymorphisms by PCR-RFLP of the mitochondrial orfB region in wild and cultivated radishes. Plant Breeding 123:141-144.   DOI   ScienceOn
3 Yamane, K., N. Lü, and O. Ohnishi. 2005. Chloroplast DNA variations of cultivated radish and its wild relatives. Plant Sci. 168:627-634.   DOI   ScienceOn
4 Zhang, J.F., Y. Lu, H. Adragna, and E. Hughs, 2005. Genetic improvement of New Mexico acala cotton germ plasm and their genetic diversity. Crop Sci. 45:2363-2373.   DOI   ScienceOn
5 Zhao, J., X. Wang, B. Deng, P. Lou, J. Wu, R. Sun, Z. Xu, J. Vromans, M. Koornneef, and G. Bennema. 2005. Genetic relationship within Brassica rapa as inferred from AFLP fingerprints. Theor. Appl. Genet. 110:1301-1314.   DOI   ScienceOn
6 Ramchiary, N., V.D. Nguyen, X. Li, C.P. Hong, V. Dhandapani, S.R. Choi, G. Yu, Z.Y. Piao, and Y.P. Lim. 2011. Genic microsatellite markers in Brassica rapa: Development, characterization, mapping, and their utility in other cultivated and wild Brassica relatives. DNA Res. 18:305-320.   DOI   ScienceOn
7 Tommasini, L., J. Bately, G.M. Arnold, R.J. Cooke, P. Monini, D. Lee, J.R. Law, C. Lowe, C. Moule, M. Trick, and K.J. Edwardw. 2003. The development of multiplex simple sequense repeat markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor. Appl. Genet. 2003:1091-1101.
8 Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Lee, M. Hornes, A. Friters, J. Pot, J. Paleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting Nucl. Acids Res. 23:4407-4414.   DOI   ScienceOn
9 Warwick, S.I., R.K. Gugel, T. Mcdonald, and K.C. Falk. 2006. Genetic variations of Ethiopian mustard (Brassica carinata A. Braun) germ plasm in western Canada. Genetic Res. Crop Evolution 53:297-312.   DOI   ScienceOn
10 Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, Y. Bai, J.H. Mun, I. Bancroft, F. Cheng, S. Huang, X. Li, W. Hua, J. Wang, X. Wang, M. Freeling, J.C. Pires, A.H. Paterson, B. Chalhoub, B. Wang, A. Hayward, A.G. Sharpe, B.S. Park, B. Weisshaar, B. Liu, B. Li, B. Liu, C. Tong, C. Song, C. Duran, C. Peng, C. Geng, C. Koh, C. Lin, D. Edwards, D. Mu, D. Shen, E. Soumpourou, F. Li, F. Fraser, G. Conant, G. Lassal, G.J. King, G. Bonnema, H. Tang, H. Wang, H. Belcram, H. Zhou, H. Hirakawa, H. Abe, H. Guo, H. Wang, H. Jin, I.A. Parkin, J. Batley, J.S. Kim, J. Just, J. Li, J. Xu, J. Deng, J.A. Kim, J. Li, J. Yu, J. Meng, J. Wang, J. Min, J. Poulain, J. Wang, K. Hatakeyama, K. Wu, L. Wang, L. Fang, M. Trick, M.G. Links, M. Zhao, M. Jin, N. Ramchiary, N. Drou, P.J. Berkman, Q. Cai, Q. Huang, R. Li, S. Tabata, S. Cheng, S. Zhang, S. Zhang, S. Huang, S. Sato, S. Sun, S.J. Kwon, S.R. Choi, T.H. Lee, W. Fan, X. Zhao, X. Tan, X. Xu, Y. Wang, Y. Qiu, Y. Yin, Y. Li, Y. Du, Y. Liao, Y. Lim, Y. Narusaka, Y. Wang, Z. Wang, Z. Li, Z. Wang, Z. Xiong, and Z. Zhang. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:1035-1038.   DOI   ScienceOn
11 Williams, J., A. Kubelik, K. Livak, J. Rafalski, and S. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 15:6531-6535.
12 Mun, J.H., S.J. Kwon, and B.S. Park. 2010. The strategy and current status of Brassica rapa genome project. Plant Biotechnol. 37:153-165.   DOI   ScienceOn
13 Mun, J.H., S.J. Kwon, T.J. Yang, Y.J. Seol, M. Jin, J.A. Kim, M.H. Lim, J.S. Kim, S. Baek, B. Choi, H.J. Yu, D.S. Kim, N. Kim, K. Lim, S.I. Lee, Y. Lim, I. Bancroft, J.H. Hahn, and B. Park. 2009. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol. 10:R111.1-R111.18.
14 Ohsako, T., M. Hirai, and M. Yamabuki. 2010. Spatial structure of microsatellite variability within and among populations of wild radish Raphanus sativus L. var. hortensis Backer f. raphanistroides Makino (Brassicaceae) in Japan. Breeding Sci. 60:195-202.   DOI   ScienceOn
15 Rohlf, E.J. 1993. NTSYS-pc: Numerical taxonomy and multivariate analysis system, version 1.80. Applied Biostatistics Inc., Setauket, New York, USA.
16 Powell, W., C.M. Gordon, and J. Provan. 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1:215-222.   DOI   ScienceOn
17 Riaz, A., G. Li, Z. Quresh, M.S. Swati, and C.F. Quiros. 2001. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breeding 120:411-415.   DOI   ScienceOn
18 Richards, R. and G.R. Sutherland. 1994. Simple repeat DNA is not replicated simply. Nat. Genet. 6:114-116.   DOI   ScienceOn
19 Sneath, P.H.A. and R.R. Sokal. 1973. Numerical taxonomy. W. H. Freeman and Company, San Francisco, USA.
20 Swabe, K., H. Iketani, T. Nunome, T. Kage, and M. Hirai. 2002. Isolation and characterization of microsatellite in Brassica rapa L. Theor. Appl. Genet. 104:1092-1098.   DOI   ScienceOn
21 Tam, S.M., C. Mhiri, A. Vogelaar, M. Kerkveld, S.R. Pearce, and M.A. Grandbastien. 2005. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor. Appl. Genet. 110:819-831.   DOI   ScienceOn
22 Kwon, S.J., D.H. Kim, M.H. Lim, Y. Long, J.L. Meng, K.B. Lim, J.A. Kim, J.S. Kim, M. Jin, H.I. Kim, S.N. Ahn, S.R. Wessler, T.J. Yang, and B.S. Park. 2007. Terminal repeat retrotransposon in miniature (TRIM) as DNA markers in Brassica relatives. Mol. Genet. Genomics 278:361-370.   DOI
23 Kwon, S.J., S.N. Ahn, H.C. Hong, Y.K. Kim, H.G. Hwang, H.C. Choi, and H.P. Moon. 1999. Genetic diversity of Korean japonica rice cultivars. Korean J. Breed Sci. 21:268-275.
24 Kwon, Y.S., J.Y. Mun, Y.S. Kwon, D.Y. Park, H.M. Yun, I.H. Song, and S.I. Seung. 2003. AFLP analysis for cultivar discrimination in radish and Chinese cabbage. Kor. J. Breed. Sci. 35:319-328.   과학기술학회마을
25 Lu, N., K. Yamane, and O. Ohnishi. 2008. Genetic diversity of cultivated and wild radish and phylogenetic relationships among Raphanus and Brassica species revealed by the analysis of trnK/matK sequence. Breeding Sci. 58:15-22.   DOI   ScienceOn
26 Lefebvre, V., B. Goffinet, J.C. Chauvet, B. Caromel, P. Signoret, R. Brand, and A. Palloix. 2001. Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes: comparison of AFLP, RAPD, and phenotypic data. Theor. Appl. Genet. 102:741-750.   DOI   ScienceOn
27 Li, M., C. Zhang, W. Qian, and J. Meng. 2007. Genetic diversity of Brassica species revealed by amplified fragment length polymorphism and simple sequence repeat markers. Hort. Environ. Biotechnol. 48:9-15.
28 Li X., N. Ramchiary, S.R. Choi, D. Van Nguyen, M.J. Hossain, H.K. Yang, and Y.P. Lim. 2010. Development of a high density integrated reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor. Appl. Genet. 53:939-947.
29 Ministry for food, agriculture, forestry and fisheries (MIFAFF). 2012, Production and status of greenhouse and open-field in vegetables. MIFAFF, Gwacheon, Korea.
30 McCouch, S.R., X. Chen, O. Panaud, S. Temnykh, Y. Xu, Y.G. Cho, N. Huang, T. Lshii, and M.W. Blair. 1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol. Biol. 35:89-99.   DOI   ScienceOn
31 Choi, W.J., S.A. Lee, S.M. Yoo, S.S. Lee, J.H. Kang, and H.C. Ko. 2008. Genetic relationship by RAPD analysis of Korean wild radish and local cultivars in radish. Kor. J. Hort. Sci. Technol. 26:427-431.   과학기술학회마을
32 Chowdhury, M.A., B. Vandenberg, and T. Warkentin. 2002. Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica 127:317-325.   DOI
33 Ishii, T., Y. Xu, and S.R. McCouch. 2001. Nuclear-and chloroplast microsatellite variation in A-genome species of rice. Genome 44:658-666.   DOI   ScienceOn
34 Cooke, R.J., G.M.M. Bredencijer, M.W. Ganal, R. Peeters, P. Issac, S. Randell, J. Jacson, M.S. Roder, V. Kozun, K. Wendehake, T. Areschchenkova, M. Dijcks, D. Laboric, L. Bertrand, and B. Vosman. 2003. Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica 132: 331-341.   DOI   ScienceOn
35 Dillmann, C., A. Bar-Hen, D. Guerin, A. Characosset, and A. Murigneux. 1997. Comparison of RFLP and morphological distances between Zea Mays L. inbred lines. Consequences for germplasm protection purposes. Theor. Appl. Cenet. 95: 92-102.   DOI   ScienceOn
36 Huh, M.K. and O. Ohnishi. 2002. Genetic diversity and genetic relationships of East Asian natural populations of wild radish revealed by AFLP. Breeding Sci. 52:79-88.   DOI   ScienceOn
37 Jewell, E., A. Robinson, D. Savage, T. Erwin, C.G. Love, G.A. Lim, X. Li, J. Batley, G.C. Spangenberg, and D. Edwards. 2006. SSR Primer and SSR taxonomy tree: biome SSR discovery. Nucleic Acids Res. 34:W656-W659.   DOI   ScienceOn
38 Kim, H., S.R. Choi, J. Bae, C.P. Hong, S.Y. Lee, M. Hossain, V.D. Nguyen, M. Jin, B.S. Park, J. Bang, I. Bancroft, and Y.P. Lim. 2009. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics 10:432-446.   DOI   ScienceOn
39 Kim, J.S., T.Y. Chung, G.J. King, M. Jin, T.J. Yang, Y.M. Jin, H.I. Kim, and B.S. Park. 2006. A sequence-tagged linkage map of Brassica rapa. Genetics 174:29-39.   DOI   ScienceOn
40 Barrett, B.A. and K.K. Kidwell. 1998. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Corp Sci. 38:1261-1271.   DOI   ScienceOn