DOI QR코드

DOI QR Code

ON A GENERALIZATION OF MCCOY RINGS

  • Camillo, Victor (Department of Mathematics The University of Iowa) ;
  • Kwak, Tai Keun (Department of Mathematics Daejin University) ;
  • Lee, Yang (Department of Mathematics Pusan National University)
  • Received : 2012.06.13
  • Published : 2013.09.01

Abstract

Rege-Chhawchharia, and Nielsen introduced the concept of right McCoy ring, based on the McCoy's theorem in 1942 for the annihilators in polynomial rings over commutative rings. In the present note we concentrate on a natural generalization of a right McCoy ring that is called a right nilpotent coefficient McCoy ring (simply, a right NC-McCoy ring). The structure and several kinds of extensions of right NC-McCoy rings are investigated, and the structure of minimal right NC-McCoy rings is also examined.

Keywords

References

  1. S. A. Amitsur, Radicals of polynomials rings, Canad. J. Math. 8 (1956), 355-361. https://doi.org/10.4153/CJM-1956-040-9
  2. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
  3. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  4. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  5. G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.
  6. V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
  7. A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Pitman Advanced Publishing Program, 1980.
  8. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
  9. K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 75 (1968), 512-514. https://doi.org/10.2307/2314716
  10. S. Ghalandarzadeh and M. Khoramdel, On weak McCoy rings, Thai J. Math. 6 (2008), no. 2, 337-342.
  11. K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.
  12. R. Gordon and J. C. Robson, Krull dimension, Memoirs of the American Mathematical Society, No. 133. American Mathematical Society, Providence, R.I., 1973.
  13. C. Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra 28 (2000), no. 10, 4867-4878. https://doi.org/10.1080/00927870008827127
  14. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
  15. S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
  16. L. G. Jones and L. Weiner, Advanced Problems and Solutions: Solutions: 4419 , Amer. Math. Monthly 59 (1952), no. 5, 336-337. https://doi.org/10.2307/2307526
  17. D. W. Jung, N. K. Kim, and Y. Lee, Nil-Armendariz rings and upper nilradicals, Internat. J. Algebra Comput. 22 (2012), no. 6, 1250059, 13 pp. https://doi.org/10.1142/S0218196712500592
  18. A. A. Klein, Rings of bounded index, Comm. Algebra 12 (1984), no. 1-2, 9-21. https://doi.org/10.1080/00927878408822986
  19. J. Krempa, Radicals of semi-group rings, Fund. Math. 85 (1974), no. 1, 57-71. https://doi.org/10.4064/fm-85-1-57-71
  20. R. L. Kruse and D. T. Price, Nilpotent Rings, Gordon and Breach, New York, London, Paris, 1969.
  21. T. K. Kwak and Y. Lee, Rings over which coefficients of nilpotent polynomials are nilpotent, Internat. J. Algebra Comput. 21 (2011), no. 5, 745-762. https://doi.org/10.1142/S0218196711006431
  22. J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
  23. C. Lanski, Nil subrings of Goldie rings are nilpotent, Canad. J. Math. 21 (1969), 904- 907. https://doi.org/10.4153/CJM-1969-098-x
  24. T. H. Lenagan, Nil ideals in rings with finite Krull dimensions, J. Algebra 29 (1974), 77-87. https://doi.org/10.1016/0021-8693(74)90112-4
  25. Z. Liu and R. Zhao, On Weak Armendariz Rings, Comm. Algebra 34 (2006), no. 7, 2607-2616. https://doi.org/10.1080/00927870600651398
  26. G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. https://doi.org/10.1081/AGB-100002173
  27. N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094
  28. L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, In: Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.
  29. P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
  30. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  31. A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 233 (2000), no. 2, 427-436. https://doi.org/10.1006/jabr.2000.8451