DOI QR코드

DOI QR Code

The Historical Background of Erlangen Program

에를랑겐 프로그램의 성립 배경

  • Received : 2013.05.27
  • Accepted : 2013.08.21
  • Published : 2013.08.31

Abstract

The Erlangen program is a scholastic plan by German mathematician Felix Klein, in which he, based on group theory, made a reassessment of geometry as well as an attempt to generally organize it. In this paper, I will introduce the historical and scholastic background of the Erlangen program, overview the process of its formation, and provide some comments regarding its historical significance.

References

  1. B. Bernardo,"H. von Helmholtz and metageometry(Italian)", Riv. Stor. Sci. (2) 4(2) (1996), 55-97.
  2. G. Birkhoff, & M. K. Bennett,"Felix Klein and His"Erlanger Programm"", History and philosophy of modern mathematics, Minnesota Stud. Philos. Sci. XI (Minneapolis, MN, 1988), 145-176.
  3. A. Cayley, The Collected Mathematical Papers, vol. 2, Cambridge(1889), Cambridge Univ. Press, 2009.
  4. M. Chasles, Apercu historique sur l'origine et le developpement des methodes geometrie, Bruxelles, 1837.
  5. J. L. Coolidge, A History of Geometrical Methods, Oxford University Press, 1940.
  6. R. Courant,"Felix Klein", Jahresbericht der Deutschen Mathematiker Vereiningung 34(1925), 197-213.
  7. Han Kyeong Hye,"Zur Geschichte der Geometrie der Lage", Dissertation zur Erlangung des Grades"Doktor der Naturwissenschaften"am Fachbereich der Johannes Gutenberg- Universitaet, Mainz, 2000.
  8. Han Kyeong Hye,"The Establishment and Foundation of Projective Geometry", The Korean Journal for History of Mathematics, 15(1) (2002), 1-14. 한경혜,"사영기하학의 성립과 그 기초", 한국수학사학회지 15(1) (2002), 1-14.
  9. T. Hawkins", The Erlanger Programmof Felix Klein: reflections on its place in the history of mathematics", Historia Mathematica 11(4) (1984), 442-470. https://doi.org/10.1016/0315-0860(84)90028-4
  10. H. vonHelmholtz", Uber den Ursprung und die Bedeutung der geometrischen Axiome", in Populare Vortrage, Heft 3, Braunschweig: Vieweg, 1876.
  11. F. Klein, Vorlesungen ueber die Entwicklungen der Mathematik im 19 Jahrhundert, AMS Chelsea Publishing, 1967.19세기 수학의 발전에 대한 강의, 한경혜 역, 나남, 2012.
  12. Felix Klein,"Ueber die sogennante Nicht-Euklidische Geometrie", Mathematische Annalen 4(1871), 573-625. https://doi.org/10.1007/BF02100583
  13. Felix Klein, Vergleichende Bertrachtungen uber neuere geometrische Forschungen, Erlangen, 1872. Reprinted with additional footnotes in Mathematische Annalen 43(1893), 63- 100 and in GMA, vol. 1, 460-97. https://doi.org/10.1007/BF01446615
  14. F. Klein, Gesammelte mathematische Abhandlungen Bd.1. Ed. R. Fricke und A. Ostrowski. Berlin, 1921.
  15. F. Klein, Elementarmathematik vom hoheren Standpunkt aus, Goettingen, 1893.
  16. H. Mehrtens, Moderne Sprache Mathematik, Suhrkamp, 1990.
  17. A. F. Mobius, Gesammelte Werke, Bd.1, Leipzig, 1885.
  18. Julius Plucker and Felix Klien, Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement, Leipzig, 1968-1969.
  19. D. E. Rowe,"Felix Klein's Erlanger Antrittsrede; A Transcription with English Translation and Commentary", Historia Mathematica 12(1985) 123-141. https://doi.org/10.1016/0315-0860(85)90003-5
  20. J. A. Schouten,"Erlanger Programm and Uebertra gungslehre", Rendiconti del Circolo Mathematico di Palermo 50(1926), 142-169. https://doi.org/10.1007/BF03014760
  21. Oswald Veblen; J. W. Young, Projective Geometry, vol. 1-2, Ginn & Co., 1938.
  22. K. Chr. von Staudt, Geometrie der Lage, Erlangen, Nuernberg, 1847.
  23. H. Wussing, Bedeutende Gelehrte, vol. II, Ed. G. Harrig, Leipzig, 1965, 1-12.