DOI QR코드

DOI QR Code

Evaluations on Antioxidant Effect of Methanol Extract from Immature Cotton Boll

미성숙 목화다래 메탄올 추출물의 항산화 효능 평가

  • Park, Hee-Jeong (Interdisciplinary Program of Perfume and Cosmetics, Chonnam National University) ;
  • Lee, Ki-Young (Faculty of Applied Chemical Engineering, Chonnam National University)
  • 박희정 (전남대학교 향장품학협동과정) ;
  • 이기영 (전남대학교 응용화학공학부)
  • Received : 2013.03.25
  • Accepted : 2013.08.13
  • Published : 2013.08.31

Abstract

The results of the content of total polyphenol and flavonoid, DPPH (1-1-diphenyl-2-picryl-hydrazyl) radical scavenging activity, ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] radical scavenging activity, nitrite scavenging activity and SOD-like activity of methanol extracts from immature cotton boll are follows. The contents of total polyphenol and flavonoid compound were higher in small size cotton boll, and DPPH and ABTS radical scavenging activity also showed a relatively high activity in the small size. These results indicate that there is a correlation between phenol content and DPPH radical scavenging, ABTS radical scavenging. The test concentrations of immature cotton boll extract for measuring DPPH and ABTS radical scavenging activities were set as 1.25, 2.5, 5, 10 and 20 mg/ml. Immature cotton boll has high radical scavenging activity at the concentration of 1.25~20 mg/ml and the result showed a tendency to increase in a concentration-dependent. The nitrite scavenging activity showed high activity in the pH 1.2, and the result in the pH 4.2 showed progressively less active, and in the pH 6.0 near neutral was confirmed that does not affect the nitrite scavenging. In addition, SOD-like activity showed somewhat lower activity compared with ascorbic acid, but tended to be higher when compared with the results of the other natural substances. Through this experiment, we confirmed that immature cotton boll was excellent antioxidant activity. Therefore, it is demonstrated that the cotton suggest the possibility of development of new material for cosmetic product or functional food in the future, and is expected to make a greater usability.

본 연구에서는 미성숙 목화다래 추출물의 항산화능을 알아보기 위해 다래를 크기별로 구분하여 총 폴리페놀 및 플라보노이드 함량과 DPPH radical의 소거능, 아질산염 소거능, ABTS radical 소거능 및 SOD 유사활성을 측정하였다. 추출물의 페놀성 화합물과 플라보노이드 함량은 목화다래의 크기가 작을수록 높게 나타났으며, DPPH radical 소거능 및 ABTS radical의 소거능 또한 작은 크기에서 상대적으로 높은 활성을 보였다. 이는 다른 선행연구들에서와 같이 페놀함량이 높은 실험군에서 DPPH radical 소거능과 ABTS radical 소거능이 높게 나타나 유의성을 확인하였다. 아질산염 소거능은 인체 위 내부환경과 같은 pH 1.2에서는 높은 활성을 보이다가 pH 4.2에서는 점차로 활성이 떨어지는 결과를 보였으며, 중성에 가까운 pH 6.0에서는 아질산염 소거에 영향을 미치지 못하는 것으로 확인되었다. 또한 SOD 유사활성은 대조군인 ascorbic acid에 비하면 낮은 활성이었지만, 기 보고된 다른 천연물들의 효소활성과 비교하였을 때 더 높거나 비슷한 결과를 나타냈다. 이와 같이 본 실험을 통해 미성숙 목화다래의 뛰어난 항산화 활성을 확인할 수 있었으며, 이는 향후 화장품이나 기능성 식품 등에 있어서 새로운 소재개발의 가능성을 시사해주는 것으로서, 그동안 주로 천연 솜의 생산을 위해 재배되어왔던 목화의 제한적 활용성을 더욱 다양하게 해줄 것으로 기대된다.

Keywords

References

  1. An, B.J. and J.T. Lee. 2002. Studies on biological activity from extract of Crataegi Fructus. J. Kor. Herbology 17:29-38 (in Korean).
  2. Bae, J.S. and T.H. Kim. 2009. Acetylcholinesterase inhibitory and antioxidant properties of Aster yomena extract. Kor. J. Herbology 24(4):121-126 (in Korean).
  3. Bae, K.H. 2000. The Medical Plants of Korea. Kyo-Hak publishing Co., Seoul, Korea. p. 332 (in Korean).
  4. Blois, M.S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181:1199-1204. https://doi.org/10.1038/1811199a0
  5. Bryan, D.M., J. Murnaghan, K.S. Jones and S.R. Bowley. 2000. Iron superoxide dismutase expression in transgenic alfalfa increase winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol. 122:1427-1438. https://doi.org/10.1104/pp.122.4.1427
  6. Chance, B., H. Sies and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59:527-605. https://doi.org/10.1152/physrev.1979.59.3.527
  7. Davies, K.J.A. 1995. Oxidative stress: The paradox of aerobic life. In Free Radicals and Oxidative Stress: Environment, Drugs and Food Additives, Rice-Evans C., B. Halliwell and G. Lunt (eds.), Biochemical Society Symposium. Portland Press, London, UK. pp. 1-31.
  8. Donnelly, J.K., K.M. McLellan, J.K. Walker and D.S. Robinson. 1989. Superoxide dismutase in foods. A Review. Food Chem. 33:243-270. https://doi.org/10.1016/0308-8146(89)90036-8
  9. Gray, J.I. and L.R. Dugan. 1975. Inhibition of N-nitrosamine formation in model food system. J. Food Sci. 40:981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  10. Hwang, Y.H., D.H. Kim, H.J. Kim, J.Y. Hwang, T.S. Park, I.S. Lee and J.H. Son. 2011. Antioxidant activities and nitric oxide production of medicine plants in Gyeongsangbukdo (Carthamus tinctorius seed, Cyperus rotundus, Schizonepeta tenuifolia, Polygonatum odoratum var. pluriflorum, Paeonia lactiflora) J. Appl. Biol. Chem. 54(3): 171-177 (in Korean). https://doi.org/10.3839/jabc.2011.029
  11. Jung, W.Y and J.M. Jeong. 2012. Change of antioxidative activity at different harvest time and improvement of atopic dermatitis effects for persimmon leaf extract. Kor. J. Herbology 27(1):41-49. https://doi.org/10.6116/kjh.2012.27.1.41
  12. Kato, H., I.E. Lee, N.V. Chuyen, S.B. Kim and F. Hayase. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidines. Agr. Biol. Chem. Tokyo. 51: 1333-1338. https://doi.org/10.1271/bbb1961.51.1333
  13. Kawaguchi, K., T. Mizuno, K. Aida and K. Uchino. 1997. Hesperidin as an inhibitor of lipases from porcine pancreas and pseudomonas. Biosci Biotecnol Biochem. 61:102-104. https://doi.org/10.1271/bbb.61.102
  14. Kim, E.D. 1962. Agricultural Dictionary. Hak-Won Publishing Co., Seoul, Korea. p. 586 (in Korean).
  15. Kim, J.W. 1998. Antitumor agents isolated from cotton balls. Ministry of Science and Technology. Gwacheon, Korea. pp. 5-17 (in Korean).
  16. Kim, Y.E., J.W. Yang, C.H. Lee and E.K. Kwon. 2009. ABTS radical scavenging and anti-tumor effects of Tricholoma matsutake sing (Pine Mushroom). J. Korean. Soc. Food. Sci. Nutr. 38(5):555-560 (in Korean). https://doi.org/10.3746/jkfn.2009.38.5.555
  17. Kim, Y. H., C. E. Lee and B. S. Kim. 2011. Study on cytotoxicity test and anti-oxidant activity of herb complex (Phellinus Linteus, Glycyrrhiza uralensis Fischer and Centella asiatica. J. Kor. Soc. Cosm. 17(3): 441-446 (in Korean).
  18. Ko, K.S. 2012. A study on antioxidant effect of methanol extract from Viola mandshurica. J. Kor. Soc. Cosm. 18(5):1082-1086 (in Korean).
  19. Kuhnau, J. 1976. The Flavonoids: a class of semiessential food components: their role in human nutrition. World Rev. Nutr. Diet. 24: 117-120.
  20. Kwak, C.S., S.A. Kim and M.S. Lee. 2005. The correlation of antioxidative effects of 5 Korean common edible seaweeds and total polyphenol content. Korean. J. Soc Food Sci Nutr. 34(8):1143-1150 (in Korean). https://doi.org/10.3746/jkfn.2005.34.8.1143
  21. Lee, D.S., M.S. Lim, S.S. Kwan, S.Y. Kim and S.N. Park. 2012. Antioxidative activity and componential analysis of Chamaecyparis obtuse leaf extract. J. Appl. Chem. 23(1):93-99 (in Korean).
  22. Lee, S.Y., J.H. An, H. Chun and H.Y. Cho. 2003. Isolation and characterzation of MMP-1 inhibitor peptide from crataegus pinnatifida bunge in fibroblast cell line HS 68 cells. Korean. J. Soc. Agric. Chem. Biotechnol. 46(1):60-65 (in Korean).
  23. Lim, T.S., J.R. Do, O.J. Kwon and H.K. Kim. 2007. Physiological activities of Agaricus Bisporus extracts as affected by solvents. J. Korean Soc. Food. Sci. Nutr. 36:383-388 (in Korean). https://doi.org/10.3746/jkfn.2007.36.4.383
  24. Middleton, E. and C. Kandaswami. 1994. Potential healthpromoting properties of citrus flavonoids. Food Tech. 48: 115-119.
  25. Miles, D. H., V. Chittawong, A.M. Payne, P.A. Hedin and U. Kokpol. 1990. Cotton boll weevil antifeedant activity and antifungal activity (Rhizoctonia solani and Pythium ultimum) of extracts of the stems of Wedelia biflora. J. Agric. Chem. 38(7):1591-1594.
  26. Nivea, M.M.I., A.R. Sampietro and M.A. Vattuone. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethropharmacol. 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  27. Prior, R.L., X. Wu and K. Schaich. 2005. Standardized method for the determination of antioxidant capacity and phenolics in foods and dietary supplement. J. Agric. Food Chem. 48:115-119.
  28. Re, R., N. Pellegrini, A. Proteggente, M. Yang and R.E. Catherine. 1999. Antioxidant activity applying an improved ABTS radical cation decolorzation assay. Free Radical Biol. Med. 26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  29. Rhim, T.J., M.Y. Choi and H.J. Park. 2012. Antioxidative activity of Rumex cripus L. extract. Korean J. Plant Res. 25(5):568-577 (in Korean). https://doi.org/10.7732/kjpr.2012.25.5.568
  30. Sen, T., H.S.H. Nasralla and A.K.N. Chaudhuri. 1995. Studies on the antiinflammatory and related pharmacological activities of Psidium guajava: A preliminary report. Phytotherapy Research 9(2):118-122. https://doi.org/10.1002/ptr.2650090208
  31. Swain, T., W.E. Hillis and M. Ortega. 1959. Phenolic constituents of ptunus domeatica, I. Quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10:83-88.

Cited by

  1. Effect of Drying and Extraction Methods on Antioxidant Activity of Gnaphalium affine D. DON vol.44, pp.5, 2015, https://doi.org/10.3746/jkfn.2015.44.5.695
  2. Efficacy of a Cosmetic Material from Complex Extracts of Vaccinium spp., Phellinus linteus, Castanea crenata, and Cimicifuga heracleifolia vol.15, pp.3, 2017, https://doi.org/10.20402/ajbc.2016.0118
  3. Antioxidative Activities of New Citrus Hybrid 'Hamilgam' Peel Extracts vol.22, pp.6, 2014, https://doi.org/10.7783/KJMCS.2014.22.6.442
  4. Comparative Study of Biological Activities at Different Harvesting Times and New Varieties for Highland Culture of Gom-chwi vol.28, pp.4, 2015, https://doi.org/10.7732/kjpr.2015.28.4.391
  5. 기능성 소재를 첨가한 우리밀 제빵 제품의 항산화 활성과 단백질 소화도 vol.24, pp.6, 2013, https://doi.org/10.17495/easdl.2014.12.24.6.853
  6. 제주조릿대 잎 추출물의 항산화효능 및 세포독성 평가에 관한 연구 vol.18, pp.3, 2013, https://doi.org/10.5762/kais.2017.18.3.687
  7. Analysis of quality characteristics of Ligularia fischeri cultivated in a greenhouse and an open field based on the harvest time vol.26, pp.1, 2019, https://doi.org/10.11002/kjfp.2019.26.1.49
  8. 곰취 '쌈마니' 품종의 재배지역 및 수확기별 항산화 활성 비교 vol.33, pp.4, 2020, https://doi.org/10.7732/kjpr.2020.33.4.245