DOI QR코드

DOI QR Code

An Analytical Model for the Threshold Voltage of Short-Channel Double-Material-Gate (DMG) MOSFETs with a Strained-Silicon (s-Si) Channel on Silicon-Germanium (SiGe) Substrates

  • Bhushan, Shiv (Department of Electronics and Communication Engineering, Nation al Institute of Technology) ;
  • Sarangi, Santunu (Department of Electronics and Communication Engineering, Nation al Institute of Technology) ;
  • Gopi, Krishna Saramekala (Department of Electronics and Communication Engineering, Nation al Institute of Technology) ;
  • Santra, Abirmoya (Department of Electronics and Communication Engineering, Nation al Institute of Technology) ;
  • Dubey, Sarvesh (Department of Electronics Engineering, IIT(BHU)) ;
  • Tiwari, Pramod Kumar (Department of Electronics and Communication Engineering, Nation al Institute of Technology)
  • 투고 : 2013.02.10
  • 심사 : 2013.04.09
  • 발행 : 2013.08.31

초록

In this paper, an analytical threshold voltage model is developed for a short-channel double-material-gate (DMG) strained-silicon (s-Si) on silicon-germanium ($Si_{1-X}Ge_X$) MOSFET structure. The proposed threshold voltage model is based on the so called virtual-cathode potential formulation. The virtual-cathode potential is taken as minimum channel potential along the transverse direction of the channel and is derived from two-dimensional (2D) potential distribution of channel region. The 2D channel potential is formulated by solving the 2D Poisson's equation with suitable boundary conditions in both the strained-Si layer and relaxed $Si_{1-X}Ge_X$ layer. The effects of a number of device parameters like the Ge mole fraction, Si film thickness and gate-length ratio have been considered on threshold voltage. Further, the drain induced barrier lowering (DIBL) has also been analyzed for gate-length ratio and amount of strain variations. The validity of the present 2D analytical model is verified with ATLAS$^{TM}$, a 2D device simulator from Silvaco Inc.

키워드

참고문헌

  1. International technology roadmap for semiconductors (ITRS): 2011 "http://www.itrs.net/Links/ 2011ITRS/Home2011.htm".
  2. N. Xou, "Effectivenes of strain solution for next generation MOSFET", Ph.D Thesis, University of California at Berkeley, 2012. (http://www.eecs. berkeley.edu/Pubs/TechRpts/2012/EECS-2012-223. html).
  3. Q. Chen, "Scaling limits and opportunities of Double-Gate MOSFETS", Ph.D Thesis, Georgia Institute of Technology, Jan. 2003.
  4. S.M. Sze, "Semiconductor Devices: Physics And Technology", 2nd Edition, Wiley-India, chap no. 3, pp. 48-51.
  5. J.P. Colinge, "Multi-gate SOI MOSFETs", Microelectronic Engineering 84, pp. 2071-2076, Sept., 2007. https://doi.org/10.1016/j.mee.2007.04.038
  6. T. Hiramoto, "Nano-scale silicon MOSFET: towards non-traditional and quantum devices", SOI Conference Proceedings, IEEE International on, 2001, 1-4, pp. 8-10, Oct., 2001.
  7. W. B. Yu, Nowak C.H.J., K. Noda, Hu Chenming, "Short-channel effect improved by lateral channelengineering in deep-submicronmeter MOSFET's", Electron Devices, IEEE Transactions on, vol. 44, no. 4, pp. 627- 634, Apr., 1997. https://doi.org/10.1109/16.563368
  8. E. Gusev, V. Narayanan, and M. Frank, "Advanced High-$\kappa$ dielectric stacks with poly-Si and metal gates: recent progress and current challenges", Research & Development, IBM Journal of, pp. 387- 410, Sept., 2006.
  9. A. Chaudhry, J. N. Roy, and G. Joshi, "Nanoscale strained-Si MOSFET physics and modeling approaches: a review", Semiconductors, Journal of, vol. 31, no. 10, pp. 104001 (1-5), Oct., 2010. https://doi.org/10.1088/1674-4926/31/10/104001
  10. J. S. Lim, S. E. Thompson, and J. G. Fossum, "Comparison of threshold voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs," IEEE Electron Device Lett., vol. 25, no. 11, pp. 731-733, Nov. 2004. https://doi.org/10.1109/LED.2004.837581
  11. R. Oberhuber, G. Zandler, and P. Vogl, "Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFET's", The American Physical Society, vol. 58, no. 15, pp. 9941-9948, Oct., 1998.
  12. V. Venkataraman, S. Nawal and M. J. Kumar, "Compact analytical threshold-voltage model of nanoscale fully depleted strained-Si on silicongermanium- on-insulator (SGOI) MOSFETs", Electron Devices, IEEE Transactions on, vol. 54, no. 3, pp. 554-562, Mar. 2007. https://doi.org/10.1109/TED.2006.890369
  13. M. Kumar, S. Dubey, P. K. Tiwari and S. Jit "An analytical study of short-channel effects of strained-si on silicon-germanium-on-insulator (SGOI) MOSFETs including interface charges", The Sixth International Conference on Quantum, Nano and Micro Technologies, Italy, 2012, 19-24, pp. 69-73, Aug, 2012.
  14. M. V. Fischetti, S. E. Laux and D. J. DiMaria, "The physics of hot-electron degradation in Si MOSFETs: Can we understand it ?," Applied Surface Science, vol. 39, pp. 578-596, Oct., 1989. https://doi.org/10.1016/0169-4332(89)90473-X
  15. S. Bhushan, S. Sarangi, A. Santra, M. Kumar, S. Dubey, S. Jit and P. K. Tiwari,"An analytical surface potential model of strained-si on silicongermanium MOSFET including the effects of interface charge", Electron Device, Journal of, vol.15, pp. 1285-1290, Sept., 2012.
  16. W Long, H. Ou, J. M. Kuo, K.K. Chin, "Dualmaterial gate (DMG) field effect transistor", Electron Devices, IEEE Transactions on, vol. 46, no. 5, pp. 865-870, May, 1999. https://doi.org/10.1109/16.760391
  17. N. Mohankumar, B. Syamal and C. K. Sarkar, "Influence of channel and gate engineering on the analog and rf performance of DG MOSFETs", Electron Devices, IEEE Transaction on, vol. 57, no. 4, pp. 820-826, Apr., 2010. https://doi.org/10.1109/TED.2010.2040662
  18. L. Jin, L. Hongxia, L. Bin, C. Lei, and Y. Bo,"Two-dimensional threshold voltage analytical model of DMG strained-silicon-on insulator MOSFETs", Semiconductors, Journal of, vol. 31, no. 8, pp. 084008 (1-6), Aug., 2010. https://doi.org/10.1088/1674-4926/31/8/084008
  19. C. Zheng, "The using of dual-material gate MOSFET in suppressing short-channel effects: a review", International Conference on Electronics, Communications and Control (ICECC), 2011, 9-11, pp. 2979-2982, Sept., 2011.
  20. C. H. Ang, E. H. Lim, R. C. Liang Cha, J. Z. Zheng, E. Quek, M. S. Zhou and D. Yen "Method to fabricate a single gate with dual work function", United State Patent ,Patent No. US 6,664,153 B2, Dec., 2003
  21. P.F. Hsu, Y.T. Hou, F.Y. Yen, V.S. Chang, P.S. Lim, C.L. Hung, L.G. Yao, J.C. Jiang, H.J. Lin, J.M. Chiou, K.M. Yin, J.J. Lee, R.L. Hwang, Y. Jin, S.M. Chang, H.J. Tao, S.C. Chen, M.S. Liang, and T.P. Ma "Advanced dual metal gate mosfets with high-k dielectric for CMOS application" VLSI Technology. Digest of Technical Papers, 2006, pp.11-12, 2006.
  22. K. Goel, M. Saxena, M. Gupta, and R. S. Gupta,"Modeling and simulation of a nanoscale three-region tri-material gate stack (TRIMGAS) MOSFET for improved carrier transport efficiency and reduced hot-electron effects", Electron Devices, IEEE Transaction on, vol. 53, no. 3, pp. 1623-1633, July., 2006. https://doi.org/10.1109/TED.2006.876272
  23. W. Long, Q. Xiang and W. Y. Liu, "Method for fabricating a dual material gate of a short channel field effect transistor", United State Patent, Patent No. US 6,153,534, Nov., 2000
  24. ATLAS Users Manual, Silvaco International, Santa Clara, CA (2012).
  25. T. Numata, T. Mizuno, T. Tezuka, J. Koga, and S. Takagi, "Control of threshold-voltage and shortchannel effects in ultrathin strained-SOI CMOS devices," Electron Devices, IEEE Tranaction on, vol. 52, no. 8, pp. 1780- 1786, Aug., 2005. https://doi.org/10.1109/TED.2005.851840
  26. M. J. Kumar, V. Venkataraman and S. Nawal, "Impact of strain or Ge content on the threshold voltage of nanoscale strained-Si/SiGe bulk MOSFETs", Device and Materials Reliability, IEEE Transactions on, vol. 7, no. 1, pp. 181-187, Mar., 2007. https://doi.org/10.1109/TDMR.2006.889269
  27. W. Zhang and J. G. Fossum, "On the threshold voltage of strained-Si-Si1−xGex MOSFETs", Electron Devices, IEEE Tranaction on, vol. 52, no. 2, pp. 263-268, Feb., 2005. https://doi.org/10.1109/TED.2004.842716
  28. K. K. Young, "Short-channel effect in fully depleted SOI MOSFETs", Electron Devices, IEEE Transaction on, vol. 36, pp. 399-402, Feb., 1989. https://doi.org/10.1109/16.19942
  29. G. Gildenblat, H. Wang, Ten-Lon Chen, X. Gu, and X. Cai "SP: An advanced potential based compact MOSFET model", Solid-State Circuit, IEEE Journal of, vol. 39, pp. 1394-1406, Sept., 2004. https://doi.org/10.1109/JSSC.2004.831604
  30. M. J. Kumar and A. Chaudhry, "Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs", Electron Devices, IEEE Transaction on, vol. 51, no. 4, pp. 569-574, Apr., 2004. https://doi.org/10.1109/TED.2004.823803
  31. U. Monga and T. A. Fjeldly, "Compact subthreshold current modeling of short-channel nanoscale double-gate MOSFET", Electron Devices, IEEE Transactions on, vol. 56, no. 7, pp. 1533-1537, July, 2009. https://doi.org/10.1109/TED.2009.2021714
  32. B. Diagne, F. Prégaldiny, C. Lallement, J.-M. Sallese, and F. Krummenacher, "Explicit compact model for symmetric double-gate MOSFETs including solutions for small-geometry effects", Solid-State Electronics, vol. 52, no. 1, pp. 99-106, Jan., 2008. https://doi.org/10.1016/j.sse.2007.06.020
  33. R. Granzner, V. M. Polyakov, F. Schwierz, M. Kittler, and T. Doll, "On the suitability of DD and HD models for the simulation of nanometer double-gate MOSFETs", Physica E: Lowdimensional Systems and Nanostructures, vol. 19, no. 1-2, pp. 33-38, July 2003. https://doi.org/10.1016/S1386-9477(03)00290-X
  34. O. Conde, F.J. Garcia Sanchez, J.J. Liou, A. Cerdeira, M. Estrada, Y. Yue "A review of recent MOSFET threshold voltage extraction methods", Microelectronics Reliability, vol. 42, pp. 583-596, Dec., 2002. https://doi.org/10.1016/S0026-2714(02)00027-6

피인용 문헌

  1. Study of low dimensional SiGe island on Si for potential visible Metal-Semiconductor-Metal photodetector vol.162, pp.2100-014X, 2017, https://doi.org/10.1051/epjconf/201716201062