DOI QR코드

DOI QR Code

Inhibitory Effect of an Urotensin II Receptor Antagonist on Proinflammatory Activation Induced by Urotensin II in Human Vascular Endothelial Cells

  • Park, Sung Lyea (Department of Pathophysiology, College of Pharmacy, Ajou University) ;
  • Lee, Bo Kyung (Department of Pathophysiology, College of Pharmacy, Ajou University) ;
  • Kim, Young-Ae (Department of Pathophysiology, College of Pharmacy, Ajou University) ;
  • Lee, Byung Ho (Bio-Organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Jung, Yi-Sook (Department of Pathophysiology, College of Pharmacy, Ajou University)
  • Received : 2013.06.14
  • Accepted : 2013.07.04
  • Published : 2013.07.31

Abstract

In this study, we investigated the effects of a selective urotensin II (UII) receptor antagonist, SB-657510, on the inflmmatory response induced by UII in human umbilical vein endothelial cells (EA.hy926) and human monocytes (U937). UII induced inflammatory activation of endothelial cells through expression of proinflammatory cytokines (IL-$1{\beta}$ and IL-6), adhesion molecules (VCAM-1), and tissue factor (TF), which facilitates the adhesion of monocytes to EA.hy926 cells. Treatment with SB-657510 significantly inhibited UII-induced expression of IL-$1{\beta}$, IL-6, and VCAM-1 in EA.hy926 cells. Further, SB-657510 dramatically blocked the UII-induced increase in adhesion between U937 and EA.hy926 cells. In addition, SB-657510 remarkably reduced UII-induced expression of TF in EA.hy926 cells. Taken together, our results demonstrate that the UII antagonist SB-657510 decreases the progression of inflammation induced by UII in endothelial cells.

Keywords

References

  1. Bokarewa, M. I., Morrissey, J. H. and Tarkowski, A. (2002) Tissue factor as a proinfl ammatory agent. Arthritis Res. 4, 190-195. https://doi.org/10.1186/ar405
  2. Bousette, N., Patel, L., Douglas, S. A., Ohlstein, E. H. and Giaid, A. (2004) Increased expression of urotensin II and its cognate receptor GPR14 in atherosclerotic lesions of the human aorta. Atherosclerosis 176, 117-123. https://doi.org/10.1016/j.atherosclerosis.2004.03.023
  3. Chatterjee, A., Black, S. M. and Catravas, J. D. (2008) Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul. Pharmacol. 49, 134-140. https://doi.org/10.1016/j.vph.2008.06.008
  4. Chen, H., Liu, C., Sun, S., Mei, Y. and Tong, E. (2001) Cytokine-induced cell surface expression of adhesion molecules in vascular endothelial cells in vitro. J. Tongji. Med. Univ. 21, 68-71. https://doi.org/10.1007/BF02888042
  5. Cirillo, P., De Rosa, S., Pacileo, M., Gargiulo, A., Angri, V., Fiorentino, I., Prevete, N., Petrillo, G., De Palma, R., Leonardi, A., De Paulis, A. and Chiariello, M. (2008) Human urotensin II induces tissue factor and cellular adhesion molecules expression in human coronary endothelial cells: an emerging role for urotensin II in cardiovascular disease. J. Thromb. Haemost. 6, 726-736. https://doi.org/10.1111/j.1538-7836.2008.02923.x
  6. Cybulsky, M. I., Iiyama, K., Li, H., Zhu, S., Chen, M., Iiyama, M., Davis, V., Gutierrez-Ramos, J. C., Connelly, P. W. and Milstone, D. S. (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107, 1255-1262. https://doi.org/10.1172/JCI11871
  7. Douglas, S. A., Tayara, L., Ohlstein, E., Halawa, N. and Giaid, A. (2002) Congestive heart failure and myocardial expression of urotensin II. Lancet 359, 1990-1997. https://doi.org/10.1016/S0140-6736(02)08831-1
  8. Galkina, E. and Ley, K. (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 2292-2301. https://doi.org/10.1161/ATVBAHA.107.149179
  9. Grenon, S. M., Aguado-Zuniga, J., Hatton, J. P., Owens, C. D., Conte, M. S. and Hughes-Fulford, M. (2012) Effects of fatty acids on endothelial cells: infl ammation and monocyte adhesion. J. Surg. Res. 177, e35-e43. https://doi.org/10.1016/j.jss.2012.04.010
  10. Haraldsen, G., Kvale, D., Lien, B., Farstad, I. N. and Brandtzaeg, P. (1996) Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J. Immunol. 156, 2558-2565.
  11. Harrison, D. G. and Ohara, Y. (1995) Physiologic consequences of increased vascular oxidant stresses in hypercholesterolemia and atherosclerosis: implications for impaired vasomotion. Am. J. Cardiol. 75, 75B-81B. https://doi.org/10.1016/0002-9149(95)80018-N
  12. Hassan, G. S., Douglas, S. A., Ohlstein, E. H. and Giaid, A. (2005) Expression of urotensin-II in human coronary atherosclerosis. Peptides 26, 2464-2472. https://doi.org/10.1016/j.peptides.2005.05.028
  13. Kleemann, R., Zadelaar, S. and Kooistra, T. (2008) Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc. Res. 79, 360-376. https://doi.org/10.1093/cvr/cvn120
  14. Kwon, H. M., Choi, Y. J., Choi, J. S., Kang, S. W., Bae, J. Y., Kang, I. J., Jun, J. G., Lee, S. S., Lim, S. S. and Kang, Y. H. (2007) Blockade of cytokine-induced endothelial cell adhesion molecule expression by licorice isoliquiritigenin through NF-kappaB signal disruption. Exp. Biol. Med. (Maywood). 232, 235-245.
  15. Lee, H. J., Lee, S. Y., Cho, K., Jeon, B. K., Lee, J. Y., Bae, H. S. and Lee, C. J. (2011) Effect of ambroxol on secretion, production and gene expression of mucin from cultured airway epithelial cells. Biomol. Ther. 19, 65-69. https://doi.org/10.4062/biomolther.2011.19.1.065
  16. Lee, N. Y., Rieckmann, P. and Kang, Y. S. (2012) The changes of pglycoprotein activity by interferon-$\gamma$ and tumor necrosis factor-$\alpha$ in primary and immortalized human brain microvascular endothelial cells. Biomol. Ther. 20, 293-298. https://doi.org/10.4062/biomolther.2012.20.3.293
  17. Libby, P. (2002) Inflammation in atherosclerosis. Nature. 420, 868-874. https://doi.org/10.1038/nature01323
  18. Loirand, G., Rolli-Derkinderen, M. and Pacaud, P. (2008) Urotensin II and atherosclerosis. Peptides 29, 778-782. https://doi.org/10.1016/j.peptides.2007.08.024
  19. Lwaleed, B. A., Cooper, A. J., Voegeli, D. and Getliffe, K. (2007) Tissue factor: a critical role in infl ammation and cancer. Biol. Res. Nurs. 9, 97-107. https://doi.org/10.1177/1099800407305733
  20. Min, J. K., Kim, Y. M., Kim, S. W., Kwon, M. C., Kong, Y. Y., Hwang, I. K., Won, M. H., Rho, J. and Kwon, Y. G. (2005) TNF-related activation induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells. J. Immunol. 175, 531-540. https://doi.org/10.4049/jimmunol.175.1.531
  21. O' Brien, K. D., McDonald, T. O., Chait, A., Allen, M. D. and Alpers, C. E. (1996) Neovascular expression of E-selectin, intercellular adhesion molecule-1 and vascular adhesion molecule-1 in human atherosclerosis and their relation to intinal leukocyte content. Circulation 93, 672-682. https://doi.org/10.1161/01.CIR.93.4.672
  22. Papadopoulos, P., Bousette, N., Al-Ramli, W., You, Z., Behm, D. J., Ohlstein, E. H., Harrison, S. M., Douglas, S. A. and Giaid, A. (2009) Targeted overexpression of the human urotensin receptor transgene in smooth muscle cells: effect of UT antagonism in ApoE knockout mice fed with Western diet. Atherosclerosis 204, 395-404. https://doi.org/10.1016/j.atherosclerosis.2008.10.044
  23. rice, D. T. and Loscalzo, J. (1999) Cellular adhesion molecules and atherogenesis. Am. J. Med. 107, 85-97.
  24. Ramos, C. L., Huo, Y., Jung, U., Ghosh, S., Manka, D. R., Sarembock, I. J. and Ley, K. (1999) Direct demonstration of P-selectinand VCAM-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-defi cient mice. Circ. Res. 84, 1237-1244. https://doi.org/10.1161/01.RES.84.11.1237
  25. Ross, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801-809. https://doi.org/10.1038/362801a0
  26. Steffel, J., Luscher, T. F. and Tanner, F. C. (2006) Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation 113, 722-731. https://doi.org/10.1161/CIRCULATIONAHA.105.567297
  27. Steinberg, D. (2002) Atherogenesis in perspective: hypercholesterolemia and infl ammation as partners in crime. Nat. Med. 8, 1211-1217. https://doi.org/10.1038/nm1102-1211
  28. Suguro, T., Watanabe, T., Ban, Y., Kodate, S., Misaki, A., Hirano, T., Miyazaki, A. and Adachi, M. (2007) Increased human urotensin II levels are correlated with carotid atherosclerosis in essential hypertension. Am. J. Hypertens. 20, 211-217. https://doi.org/10.1016/j.amjhyper.2006.08.001
  29. Tedgui, A. and Mallat, Z. (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 86, 515-581. https://doi.org/10.1152/physrev.00024.2005
  30. Tremoli, E., Camera, M., Toschi, V. and Colli, S. (1999) Tissue factor in atherosclerosis. Atherosclerosis 144, 273-283. https://doi.org/10.1016/S0021-9150(99)00063-5
  31. Watson, A. M., Olukman, M., Koulis, C., Tu, Y., Samijono, D., Yuen, D., Lee, C., Behm, D. J., Cooper, M. E., Jandeleit-Dahm, K. A., Calkin, A. C. and Allen, T. J. (2013) Urotensin II receptor antagonism confers vasoprotective effects in diabetes associated atherosclerosis: studies in humans and in a mouse model of diabetes. Diabetologia 56, 1155-1165. https://doi.org/10.1007/s00125-013-2837-9
  32. You, Z., Genest, J. Jr, Barrette, P. O., Hafi ane, A., Behm, D. J., D'Orleans-Juste, P. and Schwertani, A. G. (2012) Genetic and pharmacological manipulation of urotensin II ameliorate the metabolic and atherosclerosis sequalae in mice. Arterioscler. Thromb. Vasc. Biol. 32, 1809-1816. https://doi.org/10.1161/ATVBAHA.112.252973

Cited by

  1. Urotensin II promotes vagal-mediated bradycardia by activating cardiac-projecting parasympathetic neurons of nucleus ambiguus vol.129, pp.4, 2014, https://doi.org/10.1111/jnc.12679
  2. A novel urotensin II receptor antagonist, KR-36676, prevents ABCA1 repression via ERK/IL-1β pathway vol.803, 2017, https://doi.org/10.1016/j.ejphar.2017.03.056
  3. Blocking of urotensin receptors as new target for treatment of carrageenan induced inflammation in rats vol.82, 2016, https://doi.org/10.1016/j.peptides.2016.05.006
  4. Lancemaside A fromCodonopsis lanceolataModulates the Inflammatory Responses Mediated by Monocytes and Macrophages vol.2014, 2014, https://doi.org/10.1155/2014/405158
  5. The Role of Urotensin Receptors in the Paracetamol-Induced Hepatotoxicity Model in Mice: Ameliorative Potential of Urotensin II Antagonist vol.118, pp.2, 2016, https://doi.org/10.1111/bcpt.12447
  6. Retraction statement: ‘Urotensin II inhibits autophagy in renal tubular epithelial cells and induces extracellular matrix production in early diabetic mice’ by Guan-Jong Chen, Fei Wu, Xin-Xin Pang, Ai-Hua Zhang, Jun-Bao Shi, Min Lu and Chao-Shu Tang vol.8, pp.4, 2017, https://doi.org/10.1111/jdi.12557
  7. A Novel Urotensin II Receptor Antagonist, KR-36996 Inhibits Smooth Muscle Proliferation through ERK/ROS Pathway vol.25, pp.3, 2017, https://doi.org/10.4062/biomolther.2016.219
  8. Urotensin receptors as a new target for CLP induced septic lung injury in mice pp.1432-1912, 2018, https://doi.org/10.1007/s00210-018-1571-8
  9. Urotensin II promotes aldosterone expression in rat aortic adventitial fibroblasts vol.17, pp.2, 2013, https://doi.org/10.3892/mmr.2017.8233
  10. Evaluation of Endothelial Dysfunction in Bipolar Affective Disorders: Serum Endocan and Urotensin-II Levels vol.17, pp.2, 2013, https://doi.org/10.9758/cpn.2019.17.2.211
  11. Association between vasoactive peptide urotensin II in plasma and cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a potential therapeutic target vol.131, pp.4, 2019, https://doi.org/10.3171/2018.4.jns172313