References
- Bokarewa, M. I., Morrissey, J. H. and Tarkowski, A. (2002) Tissue factor as a proinfl ammatory agent. Arthritis Res. 4, 190-195. https://doi.org/10.1186/ar405
- Bousette, N., Patel, L., Douglas, S. A., Ohlstein, E. H. and Giaid, A. (2004) Increased expression of urotensin II and its cognate receptor GPR14 in atherosclerotic lesions of the human aorta. Atherosclerosis 176, 117-123. https://doi.org/10.1016/j.atherosclerosis.2004.03.023
- Chatterjee, A., Black, S. M. and Catravas, J. D. (2008) Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul. Pharmacol. 49, 134-140. https://doi.org/10.1016/j.vph.2008.06.008
- Chen, H., Liu, C., Sun, S., Mei, Y. and Tong, E. (2001) Cytokine-induced cell surface expression of adhesion molecules in vascular endothelial cells in vitro. J. Tongji. Med. Univ. 21, 68-71. https://doi.org/10.1007/BF02888042
- Cirillo, P., De Rosa, S., Pacileo, M., Gargiulo, A., Angri, V., Fiorentino, I., Prevete, N., Petrillo, G., De Palma, R., Leonardi, A., De Paulis, A. and Chiariello, M. (2008) Human urotensin II induces tissue factor and cellular adhesion molecules expression in human coronary endothelial cells: an emerging role for urotensin II in cardiovascular disease. J. Thromb. Haemost. 6, 726-736. https://doi.org/10.1111/j.1538-7836.2008.02923.x
- Cybulsky, M. I., Iiyama, K., Li, H., Zhu, S., Chen, M., Iiyama, M., Davis, V., Gutierrez-Ramos, J. C., Connelly, P. W. and Milstone, D. S. (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107, 1255-1262. https://doi.org/10.1172/JCI11871
- Douglas, S. A., Tayara, L., Ohlstein, E., Halawa, N. and Giaid, A. (2002) Congestive heart failure and myocardial expression of urotensin II. Lancet 359, 1990-1997. https://doi.org/10.1016/S0140-6736(02)08831-1
- Galkina, E. and Ley, K. (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 2292-2301. https://doi.org/10.1161/ATVBAHA.107.149179
- Grenon, S. M., Aguado-Zuniga, J., Hatton, J. P., Owens, C. D., Conte, M. S. and Hughes-Fulford, M. (2012) Effects of fatty acids on endothelial cells: infl ammation and monocyte adhesion. J. Surg. Res. 177, e35-e43. https://doi.org/10.1016/j.jss.2012.04.010
- Haraldsen, G., Kvale, D., Lien, B., Farstad, I. N. and Brandtzaeg, P. (1996) Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J. Immunol. 156, 2558-2565.
- Harrison, D. G. and Ohara, Y. (1995) Physiologic consequences of increased vascular oxidant stresses in hypercholesterolemia and atherosclerosis: implications for impaired vasomotion. Am. J. Cardiol. 75, 75B-81B. https://doi.org/10.1016/0002-9149(95)80018-N
- Hassan, G. S., Douglas, S. A., Ohlstein, E. H. and Giaid, A. (2005) Expression of urotensin-II in human coronary atherosclerosis. Peptides 26, 2464-2472. https://doi.org/10.1016/j.peptides.2005.05.028
- Kleemann, R., Zadelaar, S. and Kooistra, T. (2008) Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc. Res. 79, 360-376. https://doi.org/10.1093/cvr/cvn120
- Kwon, H. M., Choi, Y. J., Choi, J. S., Kang, S. W., Bae, J. Y., Kang, I. J., Jun, J. G., Lee, S. S., Lim, S. S. and Kang, Y. H. (2007) Blockade of cytokine-induced endothelial cell adhesion molecule expression by licorice isoliquiritigenin through NF-kappaB signal disruption. Exp. Biol. Med. (Maywood). 232, 235-245.
- Lee, H. J., Lee, S. Y., Cho, K., Jeon, B. K., Lee, J. Y., Bae, H. S. and Lee, C. J. (2011) Effect of ambroxol on secretion, production and gene expression of mucin from cultured airway epithelial cells. Biomol. Ther. 19, 65-69. https://doi.org/10.4062/biomolther.2011.19.1.065
-
Lee, N. Y., Rieckmann, P. and Kang, Y. S. (2012) The changes of pglycoprotein activity by interferon-
$\gamma$ and tumor necrosis factor-$\alpha$ in primary and immortalized human brain microvascular endothelial cells. Biomol. Ther. 20, 293-298. https://doi.org/10.4062/biomolther.2012.20.3.293 - Libby, P. (2002) Inflammation in atherosclerosis. Nature. 420, 868-874. https://doi.org/10.1038/nature01323
- Loirand, G., Rolli-Derkinderen, M. and Pacaud, P. (2008) Urotensin II and atherosclerosis. Peptides 29, 778-782. https://doi.org/10.1016/j.peptides.2007.08.024
- Lwaleed, B. A., Cooper, A. J., Voegeli, D. and Getliffe, K. (2007) Tissue factor: a critical role in infl ammation and cancer. Biol. Res. Nurs. 9, 97-107. https://doi.org/10.1177/1099800407305733
- Min, J. K., Kim, Y. M., Kim, S. W., Kwon, M. C., Kong, Y. Y., Hwang, I. K., Won, M. H., Rho, J. and Kwon, Y. G. (2005) TNF-related activation induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells. J. Immunol. 175, 531-540. https://doi.org/10.4049/jimmunol.175.1.531
- O' Brien, K. D., McDonald, T. O., Chait, A., Allen, M. D. and Alpers, C. E. (1996) Neovascular expression of E-selectin, intercellular adhesion molecule-1 and vascular adhesion molecule-1 in human atherosclerosis and their relation to intinal leukocyte content. Circulation 93, 672-682. https://doi.org/10.1161/01.CIR.93.4.672
- Papadopoulos, P., Bousette, N., Al-Ramli, W., You, Z., Behm, D. J., Ohlstein, E. H., Harrison, S. M., Douglas, S. A. and Giaid, A. (2009) Targeted overexpression of the human urotensin receptor transgene in smooth muscle cells: effect of UT antagonism in ApoE knockout mice fed with Western diet. Atherosclerosis 204, 395-404. https://doi.org/10.1016/j.atherosclerosis.2008.10.044
- rice, D. T. and Loscalzo, J. (1999) Cellular adhesion molecules and atherogenesis. Am. J. Med. 107, 85-97.
- Ramos, C. L., Huo, Y., Jung, U., Ghosh, S., Manka, D. R., Sarembock, I. J. and Ley, K. (1999) Direct demonstration of P-selectinand VCAM-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-defi cient mice. Circ. Res. 84, 1237-1244. https://doi.org/10.1161/01.RES.84.11.1237
- Ross, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801-809. https://doi.org/10.1038/362801a0
- Steffel, J., Luscher, T. F. and Tanner, F. C. (2006) Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation 113, 722-731. https://doi.org/10.1161/CIRCULATIONAHA.105.567297
- Steinberg, D. (2002) Atherogenesis in perspective: hypercholesterolemia and infl ammation as partners in crime. Nat. Med. 8, 1211-1217. https://doi.org/10.1038/nm1102-1211
- Suguro, T., Watanabe, T., Ban, Y., Kodate, S., Misaki, A., Hirano, T., Miyazaki, A. and Adachi, M. (2007) Increased human urotensin II levels are correlated with carotid atherosclerosis in essential hypertension. Am. J. Hypertens. 20, 211-217. https://doi.org/10.1016/j.amjhyper.2006.08.001
- Tedgui, A. and Mallat, Z. (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 86, 515-581. https://doi.org/10.1152/physrev.00024.2005
- Tremoli, E., Camera, M., Toschi, V. and Colli, S. (1999) Tissue factor in atherosclerosis. Atherosclerosis 144, 273-283. https://doi.org/10.1016/S0021-9150(99)00063-5
- Watson, A. M., Olukman, M., Koulis, C., Tu, Y., Samijono, D., Yuen, D., Lee, C., Behm, D. J., Cooper, M. E., Jandeleit-Dahm, K. A., Calkin, A. C. and Allen, T. J. (2013) Urotensin II receptor antagonism confers vasoprotective effects in diabetes associated atherosclerosis: studies in humans and in a mouse model of diabetes. Diabetologia 56, 1155-1165. https://doi.org/10.1007/s00125-013-2837-9
- You, Z., Genest, J. Jr, Barrette, P. O., Hafi ane, A., Behm, D. J., D'Orleans-Juste, P. and Schwertani, A. G. (2012) Genetic and pharmacological manipulation of urotensin II ameliorate the metabolic and atherosclerosis sequalae in mice. Arterioscler. Thromb. Vasc. Biol. 32, 1809-1816. https://doi.org/10.1161/ATVBAHA.112.252973
Cited by
- Urotensin II promotes vagal-mediated bradycardia by activating cardiac-projecting parasympathetic neurons of nucleus ambiguus vol.129, pp.4, 2014, https://doi.org/10.1111/jnc.12679
- A novel urotensin II receptor antagonist, KR-36676, prevents ABCA1 repression via ERK/IL-1β pathway vol.803, 2017, https://doi.org/10.1016/j.ejphar.2017.03.056
- Blocking of urotensin receptors as new target for treatment of carrageenan induced inflammation in rats vol.82, 2016, https://doi.org/10.1016/j.peptides.2016.05.006
- Lancemaside A fromCodonopsis lanceolataModulates the Inflammatory Responses Mediated by Monocytes and Macrophages vol.2014, 2014, https://doi.org/10.1155/2014/405158
- The Role of Urotensin Receptors in the Paracetamol-Induced Hepatotoxicity Model in Mice: Ameliorative Potential of Urotensin II Antagonist vol.118, pp.2, 2016, https://doi.org/10.1111/bcpt.12447
- Retraction statement: ‘Urotensin II inhibits autophagy in renal tubular epithelial cells and induces extracellular matrix production in early diabetic mice’ by Guan-Jong Chen, Fei Wu, Xin-Xin Pang, Ai-Hua Zhang, Jun-Bao Shi, Min Lu and Chao-Shu Tang vol.8, pp.4, 2017, https://doi.org/10.1111/jdi.12557
- A Novel Urotensin II Receptor Antagonist, KR-36996 Inhibits Smooth Muscle Proliferation through ERK/ROS Pathway vol.25, pp.3, 2017, https://doi.org/10.4062/biomolther.2016.219
- Urotensin receptors as a new target for CLP induced septic lung injury in mice pp.1432-1912, 2018, https://doi.org/10.1007/s00210-018-1571-8
- Urotensin II promotes aldosterone expression in rat aortic adventitial fibroblasts vol.17, pp.2, 2013, https://doi.org/10.3892/mmr.2017.8233
- Evaluation of Endothelial Dysfunction in Bipolar Affective Disorders: Serum Endocan and Urotensin-II Levels vol.17, pp.2, 2013, https://doi.org/10.9758/cpn.2019.17.2.211
- Association between vasoactive peptide urotensin II in plasma and cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a potential therapeutic target vol.131, pp.4, 2019, https://doi.org/10.3171/2018.4.jns172313