References
- Arranz, N., Haza, A. I., Garcia, A., Delgado, E., Rafter, J. and Morales, P. (2007) Effects of organosulfurs, isothiocyanates and vitamin C towards hydrogen peroxide-induced oxidative DNA damage (strand breaks and oxidized purines/pyrimidines) in human hepatoma cells. Chem. Biol. Interact. 169, 63-71. https://doi.org/10.1016/j.cbi.2007.05.006
- Beppu, F., Niwano, Y., Sato, E., Kohno, M., Tsukui, T., Hosokawa, M. and Miyashita, K. (2009a) In vitro and in vivo evaluation of mutagenicity of fucoxanthin (FX) and its metabolite fucoxanthinol (FXOH). J. Toxicol. Sci. 34, 693-698. https://doi.org/10.2131/jts.34.693
- Beppu, F., Niwano, Y., Tsukui, T., Hosokawa, M. and Miyashita, K. (2009b) Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. J. Toxicol. Sci. 34, 510-510.
-
Bottai, G., Mancina, R., Muratori, M., Di Gennaro, P. and Lotti, T. (2012)
$17\beta$ -estradiol protects human skin fi broblasts and keratinocytes against oxidative damage. J. Eur. Acad. Dermatol. Venereol. doi: 10.1111/j.1468-3083. [Epub ahead of print] - Cadenas, E. and Davies, K. J. (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29, 222-230. https://doi.org/10.1016/S0891-5849(00)00317-8
- Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936-942.
- Chakravarti, B. and Chakravarti, D. N. (2007) Oxidative modifi cation of proteins: Age-related changes. Gerontology 53, 128-139. https://doi.org/10.1159/000097865
- Cory, S., Huang, D. C. and Adams, J. M. (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590-8607. https://doi.org/10.1038/sj.onc.1207102
- Das, S. K., Ren, R., Hashimoto, T. and Kanazawa, K. (2010) Fucoxanthin induces apoptosis in osteoclast-like cells differentiated from RAW264. 7 cells. J. Agric. Food Chem. 58, 6090-6095. https://doi.org/10.1021/jf100303k
- Deavall, D. G., Martin, E. A., Horner, J. M. and Roberts, R. (2012) Druginduced oxidative stress and toxicity. J. Toxicol. 2012, 645460.
- Devasagayam, T., Tilak, J., Boloor, K., Sane, K., Ghaskadbi, S. and Lele, R. (2004) Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India 52, 794-804.
- Ditch, S. and Paull, T. T. (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem. Sci. 37, 15-22. https://doi.org/10.1016/j.tibs.2011.10.002
- D'Orazio, N., Gemello, E., Gammone, M. A., de Girolamo, M., Ficoneri, C. and Riccioni, G. (2012) Fucoxantin: A treasure from the sea. Mar. Drugs 10, 604-616. https://doi.org/10.3390/md10030604
- D'souza, D., Subhas, B. G., Shetty, S. R. and Balan, P. (2012) Estimation of serum malondialdehyde in potentially malignant disorders and post-antioxidant treated patients: A biochemical study. Contemp. Clin. Dent. 3, 448-451. https://doi.org/10.4103/0976-237X.107438
- Emerit, I. (1992) Free radicals and aging of the skin. EXS 62, 328-341.
- Frenkel, K. (1992) Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol. Ther. 53, 127-166. https://doi.org/10.1016/0163-7258(92)90047-4
- Fuchs, J., Hufl ejt, M. E., Rothfuss, L. M., Wilson, D. S., Carcamo, G. and Packer, L. (1989) Impairment of enzymic and nonenzymic antioxidants in skin by UVB irradiation. J. Invest. Dermatol. 93, 769-773. https://doi.org/10.1111/1523-1747.ep12284412
- Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281, 1309-1312. https://doi.org/10.1126/science.281.5381.1309
- Heo, S. J. and Jeon, Y. J. (2009) Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J. Photochem. Photobiol. B 95, 101-107. https://doi.org/10.1016/j.jphotobiol.2008.11.011
-
Heo, S. J., Ko, S. C., Kang, S. M., Kang, H. S., Kim, J. P., Kim, S. H., Lee, K.W., Cho, M.G. and Jeon, Y. J. (2008) Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against
$H_{2}O_{2}$ -induced cell damage. Eur. Food Res. Technol. 228, 145-151. https://doi.org/10.1007/s00217-008-0918-7 - Hu, T., Liu, D., Chen, Y., Wu, J. and Wang, S. (2010) Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafi da in vitro. Int. J. Biol. Macromol. 46, 193-198. https://doi.org/10.1016/j.ijbiomac.2009.12.004
- Jeong, S. Y. and Seol, D. W. (2008) The role of mitochondria in apoptosis. BMB Rep. 41, 11-22. https://doi.org/10.5483/BMBRep.2008.41.1.011
- Khan, M. N., Cho, J. Y., Lee, M. C., Kang, J. Y., Park, N. G., Fujii, H. and Hong, Y. K. (2007) Isolation of two anti-infl ammatory and one pro-infl ammatory polyunsaturated fatty acids from the brown seaweed Undaria pinnatifi da. J. Agric. Food Chem. 55, 6984-6988. https://doi.org/10.1021/jf071791s
- Klaunig, J. E., Kamendulis, L. M. and Hocevar, B. A. (2010) Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol. 38, 96-109. https://doi.org/10.1177/0192623309356453
- Li, L., Abe, Y., Kanagawa, K., Usui, N., Imai, K., Mashino, T., Mochizuki, M. and Miyata, N. (2004) Distinguishing the 5, 5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method. Anal. Chim. Acta 512, 121-124. https://doi.org/10.1016/j.aca.2004.02.020
-
Li, R., Yan, G., Li, Q., Sun, H., Hu, Y., Sun, J. and Xu, B. (2012) MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (
$H_{2}O_{2}$ )-induced apoptosis through targeting the mitochondria apoptotic pathway. PLoS One 7, e44907. https://doi.org/10.1371/journal.pone.0044907 - Licandro, G., Khor, H. L., Beretta, O., Lai, J., Derks, H., Laudisi, F., Conforti-Andreoni, C., Qian, H. L., Teng, G. G., Ricciardi-Castaqnoli, P. and Mortellaro, A. (2013) The NLRP3 infl ammasome affects DNA damage responses after oxidative and genotoxic stress in dendritic cells. Eur. J. Immunol. doi: 10.1002/eji. [Epub ahead of print]
- Liu, C. L., Chiu, Y. T. and Hu, M. L. (2011) Fucoxanthin enhances HO-1 and NQO1 expression in murine hepatic BNL CL. 2 cells through activation of the Nrf2/ARE system partially by its pro-oxidant activity. J. Agric. Food Chem. 59, 11344-11351. https://doi.org/10.1021/jf2029785
- Loeb, L. A., Wallace, D. C., and Martin, G. M. (2005) The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc. Natl. Acad. Sci. U.S.A. 102, 18769-18770. https://doi.org/10.1073/pnas.0509776102
- Maeda, H., Hosokawa, M., Sashima, T, Funayama, K. and Miyashita, K. (2005) Fucoxanthin from edible seaweed, Undaria pinnatifi da, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem. Biophys. Res. Commun. 332, 392-397. https://doi.org/10.1016/j.bbrc.2005.05.002
- Marnett, L. J. (2000) Oxyradicals and DNA damage. Carcinogenesis 21, 361-370. https://doi.org/10.1093/carcin/21.3.361
- Mercadante, A. Z. and Egeland, E. S. (2004) Carotenoids with a C40 Skeleton. In Carotenoids-Handbook (G, Britton., S, Liaaen-Jensen., H, Pfander., Eds.), pp. 563. Birkhauser, Basel, Switzerland.
- Neofytou, E., Tzortzaki, E. G., Chatziantoniou, A. and Siafakas, N. M. (2012) DNA damage due to oxidative stress in chronic obstructive pulmonary disease (COPD). Int. J. Mol. Sci. 13, 16853-16864. https://doi.org/10.3390/ijms131216853
- Nys, K. and Agostinis, P. (2012) Bcl-2 family members: essential players in skin cancer. Cancer Lett. 320, 1-13. https://doi.org/10.1016/j.canlet.2012.01.031
- Orrenius, S. (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab. Rev. 39, 443-455. https://doi.org/10.1080/03602530701468516
- Perelman, A., Wachtel, C., Cohen, M., Haupt, S., Shapiro, H. and Tzur, A. (2012) JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 3, 1-7.
- Plazar, J., Zegura, B., Lah, T. T. and Filipic, M. (2007) Protective effects of xanthohumol against the genotoxicity of benzo (a) pyrene (BaP), 2-amino-3-methylimidazo [4, 5-f] quinoline (IQ) and tert-butyl hydroperoxide (t-BOOH) in HepG2 human hepatoma cells. Mutat. Res. 632, 1-8. https://doi.org/10.1016/j.mrgentox.2007.03.013
- Rajagopalan, R., Ranjan, S. and Nair, C. K. (2003) Effect of vinblastine sulfate on gamma-radiation-induced DNA single-strand breaks in murine tissues. Mutat. Res. 536, 15-25. https://doi.org/10.1016/S1383-5718(03)00015-9
- Roberts, C. K. and Sindhu, K. K. (2009) Oxidative stress and metabolic syndrome. Life Sci. 84, 705-712. https://doi.org/10.1016/j.lfs.2009.02.026
- Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. and Bonner, W. M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858-5868. https://doi.org/10.1074/jbc.273.10.5858
- Rosenkranz, A. R., Schmaldienst, S., Stuhlmeier, K. M., Chen, W., Knapp, W. and Zlabinger, G. J. (1992) A microplate assay for the detection of oxidative products using 2′, 7′-dichlorofl uorescin-diacetate. J. Immunol. Methods 156, 39-45. https://doi.org/10.1016/0022-1759(92)90008-H
- Sachindra, N. M., Sato, E., Maeda, H., Hosokawa, M., Niwano, Y., Kohno, M. and Miyashita, K. (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J. Agric. Food Chem. 55, 8516-8522. https://doi.org/10.1021/jf071848a
- Sander, C. S., Chang, H., Salzmann, S., Muller, C. S., Ekanayake-Mudiyanselage, S., Elsner, P. and Thiele, J. J. (2002) Photoaging is associated with protein oxidation in human skin in vivo. J. Invest. Dermatol. 118, 618-625. https://doi.org/10.1046/j.1523-1747.2002.01708.x
- Santos, C. X., Anilkumar, N., Zhang, M., Brewer, A. C. and Shah, A. M. (2011) Redox signaling in cardiac myocytes. Free Radic. Biol. Med. 50, 777-793. https://doi.org/10.1016/j.freeradbiomed.2011.01.003
- Schumacker, P. T. (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10, 175-176. https://doi.org/10.1016/j.ccr.2006.08.015
- Sinha, K., Das, J., Pal, P. B. and Sil, P. C. (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. DOI 10.1007/s00204-013-1034- 4. [Epub ahead of print]
- Spencer, J. P., Jenner, A., Chimel, K., Aruoma, O. I., Cross, C. E., Wu, R. and Halliwell, B. (1995) DNA strand breakage and base modifi - cation induced by hydrogen peroxide treatment of human respiratory tract epithelial cells. FEBS Lett. 374, 233-236. https://doi.org/10.1016/0014-5793(95)01117-W
- Sun Y. (2007) Oxidative stress and cardiac repair/remodeling following infarction. Am. J. Med. Sci. 334, 197-205. https://doi.org/10.1097/MAJ.0b013e318157388f
- Woo, M. N., Jeon, S. M., Shin, Y. C., Lee, M. K., Kang, M. and Choi, M. S. (2009) Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol. Nutr. Food Res. 53, 1603-1611. https://doi.org/10.1002/mnfr.200900079
- Yan, X., Chuda, Y., Suzuki, M. and Nagata, T. (1999) Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem. 63, 605-607. https://doi.org/10.1271/bbb.63.605
Cited by
- Bioactive compounds from brown seaweeds: Phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer vol.14, 2015, https://doi.org/10.1016/j.phytol.2015.09.007
- Marine algae as attractive source to skin care vol.51, pp.6, 2017, https://doi.org/10.1080/10715762.2017.1355550
- Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer vol.13, pp.10, 2015, https://doi.org/10.3390/md13106152
- Fucoxanthin prevents H2O2-induced neuronal apoptosis via concurrently activating the PI3-K/Akt cascade and inhibiting the ERK pathway vol.61, pp.1, 2017, https://doi.org/10.1080/16546628.2017.1304678
- Fucoxanthin Enhances the Level of Reduced Glutathione via the Nrf2-Mediated Pathway in Human Keratinocytes vol.12, pp.7, 2014, https://doi.org/10.3390/md12074214
- Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress vol.37, pp.1, 2016, https://doi.org/10.3892/ijmm.2015.2405
- The ethyl acetate fraction ofSargassum muticumattenuates ultraviolet B radiation-induced apoptotic cell death via regulation of MAPK- and caspase-dependent signaling pathways in human HaCaT keratinocytes vol.52, pp.9, 2014, https://doi.org/10.3109/13880209.2013.879186
- 3′,4′,7-Trihydroxyflavone prevents apoptotic cell death in neuronal cells from hydrogen peroxide-induced oxidative stress vol.80, 2015, https://doi.org/10.1016/j.fct.2015.02.014
- Fucoxanthin Exerts Cytoprotective Effects against Hydrogen Peroxide-induced Oxidative Damage in L02 Cells vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/1085073
- Fucoxanthin-Containing Cream Prevents Epidermal Hyperplasia and UVB-Induced Skin Erythema in Mice vol.16, pp.10, 2018, https://doi.org/10.3390/md16100378
- Fucoxanthin Elicits Epigenetic Modifications, Nrf2 Activation and Blocking Transformation in Mouse Skin JB6 P+ Cells vol.20, pp.2, 2018, https://doi.org/10.1208/s12248-018-0197-6
- Fucoxanthin and Rosmarinic Acid Combination Has Anti-Inflammatory Effects through Regulation of NLRP3 Inflammasome in UVB-Exposed HaCaT Keratinocytes vol.17, pp.8, 2019, https://doi.org/10.3390/md17080451
- Genome-Protecting Compounds as Potential Geroprotectors vol.21, pp.12, 2013, https://doi.org/10.3390/ijms21124484
- Fucoxanthin@Polyvinylpyrrolidone Nanoparticles Promoted Oxidative Stress-Induced Cell Death in Caco-2 Human Colon Cancer Cells vol.19, pp.2, 2013, https://doi.org/10.3390/md19020092
- Fucoxanthin Suppresses Osteoclastogenesis via Modulation of MAP Kinase and Nrf2 Signaling vol.19, pp.3, 2013, https://doi.org/10.3390/md19030132
- Anti-Photoaging and Potential Skin Health Benefits of Seaweeds vol.19, pp.3, 2021, https://doi.org/10.3390/md19030172
- Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds vol.22, pp.9, 2013, https://doi.org/10.3390/ijms22094383
- Modulation of the ubiquitin-proteasome system by marine natural products vol.41, pp.None, 2021, https://doi.org/10.1016/j.redox.2021.101897
- Validation of Fucoxanthin from Microalgae Phaeodactylum tricornutum for the Detection of Amyloid Burden in Transgenic Mouse Models of Alzheimer’s Disease vol.11, pp.13, 2013, https://doi.org/10.3390/app11135878