DOI QR코드

DOI QR Code

Predicting Rainfall Infiltration-Groundwater Flow Based on GIS for a Landslide Analysis

산사태해석을 위한 GIS기반의 강우침투-지하수흐름 예측 기법 제안

  • 김정환 (연세대학교 토목환경공학과) ;
  • 정상섬 (연세대학교 토목환경공학과) ;
  • 배덕효 (세종대학교 건설환경공학과)
  • Received : 2013.04.18
  • Accepted : 2013.07.22
  • Published : 2013.07.31

Abstract

This paper describes a GIS-based geohydrologic methodology, called YSGWF (YonSei GroundWater Flow) for predicting the rainfall infiltration-groundwater flow of slopes. This physical-based model was developed by the combination of modified Green-Ampt model that considers the unsaturated soil parameters and GIS-based raster model using Darcy's law that reflects the groundwater flow. In the model, raster data are used to simulate the three dimensional inclination of bedrock surface as actual topographic data, and the groundwater flow is governed by the slope. Also, soil profile is ideally subdivided into three zones, i.e., the wetting band zone, partially saturated zone, and fully saturated zone. In the wetting band and partially saturated zones the vertical infiltration of water (rainfall) from surface into ground is modeled. When the infiltrated water recharges into the fully saturated zone, the horizontal flow of groundwater is introduced. A comparison between the numerical calculation and real landslide data shows a reasonable agreement, which indicate that the model can be used to simulate real rainfall infiltration-groundwater flow.

본 연구에서는 산사태 해석을 위한 GIS기반의 지반수문학적인 강우침투-지하수 흐름 모델(YSGWF, YonSei GroundWater Flow)을 개발하였다. 이 모델은 흙의 불포화 특성을 반영하기 위하여 개선된 Green-Ampt 모델을 적용하였으며, 지하수의 흐름을 계산하기 위하여 Darcy의 법칙과 GIS의 래스트 모델을 사용하였다. GIS 수치표고모델을 그리드 형태의 래스트 모델(Raster Model)로 변환하여 기반암 데이터를 모델링 하였으며, 경사와 흐름 방향을 분석하여 지하수 흐름 해석이 가능하도록 하였다. 지하수의 분포는 지표면으로 부터 강우 침투에 의해 일시적으로 형성되는 습윤대, 함양되기 전까지의 불포화대, 기반암 상부의 지하수대로 구분하였으며, 지하수대 상부의 연직방향 침투와 지하수대에서의 수평방향 흐름을 고려하여 3차원적인 지하수 흐름을 계산하도록 하였다. 실제 사례와 비교한 결과, 본 지하수 예측모델(YSGWF)에 의한 산사태 해석 결과는 산사태 발생지역을 비교적 정확히 예측하는 것으로 판단되며, 이러한 검증을 토대로 실제 산지에 대한 산사태 해석을 위한 지하수 예측에 적용 가능함을 확인할 수 있었다.

Keywords

References

  1. Korean Meteorological Administration (2011), http://www.kma.go.kr, Auto Weather System (AWS).
  2. Baum, R.L., Savage, W.Z., and Godt, J.W. (2008), "TRIGRS-A fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0", U.S. Geological Survey, Open-File Report 2008-1159.
  3. Beven, K.J. and Kirkby, M.J. (1979), "A physically based, variable contributing area model of basin hydrology", Hydrological Sciences, Vol.24, pp.43-69. https://doi.org/10.1080/02626667909491834
  4. Beven, K.J., Lamb, R., Quinn, P., Romanowicz, R., and Freer, J. (1995), "TOPMODEL, Chapter 18 in Computer Models of Watershed Hydrology", Edited by V. P. Singh, Water Resources Publications, Highlands Ranch, Colorado, pp.627-668.
  5. Borga, M., Fontana, G.D., and Cazorzi, F. (2002), "Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index", Journal of Hydrology, Vol.268, pp.56-71. https://doi.org/10.1016/S0022-1694(02)00118-X
  6. Fredlund, D.G., Morgenstern, N.R., and Widger, A. (1978), "Shear strength of unsaturated soils", Journal of Canadian Geotech, Vol.15, pp.313-321. https://doi.org/10.1139/t78-029
  7. Goldschmidt (1960), "Hydrometeorological methods of quantitative estimation of annual underground water replenishment", Internat. Assoc. of Sci. Hydrology, No.52, pp.272-278.
  8. Green, W.H. and Ampt, G.A. (1911), "Studies on soil physics I-the flow of air and water through soils", Journal of Agriculture Science, Vol.4, No.1, pp.1-24. https://doi.org/10.1017/S0021859600001441
  9. Hammond, C., D. Miller, H.S., and Swetik, P. (1992), "Level I Stability Analysis (LISA) Documentation for Version 2.0", USDA Forest Service Intermountain Research Station, General Technical Report INT-285.
  10. Iverson, R.M. (2000), "Landslide triggering by rain infiltration", Water Resources Research, Vol.36, No.7, pp.1897-1910. https://doi.org/10.1029/2000WR900090
  11. Jenson, S.K. and Dominque, J.O. (1988), "Exacting topographic structure from digital elevation data for geographic information system analysis", Photogrammetric Engineering and Remote Sensing, Vol.54, No.11, pp.1593-1600.
  12. Jeong, S.S., Kim, J.H., and Lee, K.H. (2008), "Effect of clay content on well-graded sands due to infiltration", Engineering Geology, Vol.102, pp.74-81. https://doi.org/10.1016/j.enggeo.2008.08.002
  13. Jeong, S.S., Kim, J.H., and Park, S.W. (2004), "Influence of rainfall-induced wetting on unsaturated weathered slopes", Journal of the KGS, Vol.20, No.7, pp.159-169.
  14. Jeong, S.S., Choi, J.Y., and Lee, J.H. (2009), "Stability analysis of unsaturated weathered soil slopes consigering rainfall duration", Journal of KSCE, Vol.29, No.1C, pp.1-9.
  15. Kim, J.H., Jeong, S.S., Park, S.W., and Sharma, J. (2004), "Influence of rainfall-induced wetting on the stability of slopes in wethered soil", Engineering Geology, Vol.75, pp.252-262.
  16. Kim, J.H., Jeong, S.S., and Regueiro, R.A. (2012), "Instability of partially saturated soil slopes due to alteration of rainfall pattern", Engineering Geology, Vol.147-148, pp.28-36. https://doi.org/10.1016/j.enggeo.2012.07.005
  17. Kim, J.H., Kim, Y.M., Lee, K.W., and Jeong, S.S. (2012), "A new prediction model (YS-Slope) for extreme rainfall-induced landslide hazard based on 3D spatial data", KSCE Civil Expo special session, pp.9-16.
  18. Kim, S.K. (1994), "Instability of Cut slopes due to rainfall", KGS Geotechnical Conference, pp.25-47.
  19. Mark, D. M. (1984), "Automated detection of drainage networks from digital elevation model", Cartographica, Vol.21, No.2, pp.168-177. https://doi.org/10.3138/10LM-4435-6310-251R
  20. Mein, R.G. and Larson, C.L. (1973), "Modeling infiltration during a steady rain", Water Resources Research, Vol.9, No.2, pp.384-394. https://doi.org/10.1029/WR009i002p00384
  21. Motgomery, D.R. and Dietrich, W.E. (1994), "A physically based model for the topographic control on shallow landsliding", Water Resources Research, Vol.30, No.4, pp.1153-1171. https://doi.org/10.1029/93WR02979
  22. Pack, R.T., Tarboton, D.G., and Goodwin, C.N. (1998), "The SINMAP approach to terrain stability mapping", proceedings, International Congress of the International Association of Engineering Geology and the Environment, 8th, Vancouver, Britich Columbia, Canada, pp.1157-1165.
  23. Pradel, D. and Raad, G (1993), "Effect of permeability on surficial stability of homogeneous slopes", Journal of Geotechnical Engineering, ASCE, Vol.119, No.2, pp.315-332. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:2(315)
  24. Reddi, L.N. and Wu, T.H. (1991), "Probabilistic analysis of groundwater levels in hillside slopes", Journal of Geotechnical Enginneering, ASCE, Vol.117, No.6, pp.872-890. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(872)
  25. Sangrey, D.A., Harrop-Willimas, K.O., and Klaiber, J.A. (1984), "Predicting ground-water response to precipitation", Journal of Geotechnical Enginneering, ASCE, Vol.110, No.7, pp.957-975. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:7(957)
  26. Soller, D.R. et al. (1999), "Proposed guidelines for inclusion of digital map products in the National Geologic Map Database", Digital Mapping Techniques '99-Workshop Proceedings, U.S. Geological Survey Open-File Report 99-386, pp.35-38.
  27. Soller, D.R. and Berg, T.M. (2003), "The National Geologic Map Database Project: Overview and Progress", Digital Mapping Techniques '03 - Workshop Proceedings, U.S. Geological Survey Open-File Report 03-471.
  28. Tarboton, D.G. (1997), "A New Method for the determination of flow directions and upslope areas in grid digital elevation models", Water Resources Research, Vol.33, No.2, pp.309-312. https://doi.org/10.1029/96WR03137
  29. Topper, R., Spray, K.L., Bellis, W.H., Hamilton, J.L., and Barkmann, P.E. (2003), "Ground water atlas of Colorado", Colorado Geological Survey.
  30. Zonghu, L. et al. (2011), "Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)'s predictive skill for hurricane-triggered landslide : a case study in Macon Country, North Carolina", Natural Hazards, Vol.58, pp.325-339. https://doi.org/10.1007/s11069-010-9670-y