• 제목/요약/키워드: Rainfall-infiltration

검색결과 391건 처리시간 0.021초

강우시 사면안전율 변화를 이용한 열차운전규제기준 개발 (The Development of Rail-Transport Operation Control using the Variation of Slope Stability under Rainfall)

  • 김현기;이진욱;신민호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.397-402
    • /
    • 2003
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment are defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF

강우시 성토사면의 열차운전규제기준 (Rail Transport Operation Control for Railway Embankment under rainfall)

  • 김현기;신민호;최찬용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.225-232
    • /
    • 2009
  • Infiltration of rainfall causes railway slopes to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze its stability by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. And suggested rainfall index is compared with the rail transport operation control which is used in KORAIL. It is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF

유역 단위 Horton 침투모형을 적용한 시간단위 초과우량 산출 절차 제시 (An Offer of a Procedure Calculating Hourly Rainfall Excess by Use of Horton Infiltration Model in a Basin)

  • 유주환
    • 한국수자원학회논문집
    • /
    • 제43권6호
    • /
    • pp.533-541
    • /
    • 2010
  • 강우-유출모형에 의해서 유역내 강우로부터 직접 유출량을 산출하는 것은 홍수량 예측에 기초가 된다. 직접 유출량은 강우-유출모형에 의해서 초과우량 또는 유효우량으로부터 산출된다. 시간별 초과우량은 시간별 총 강우에서 강우의 손실량을 제하여 산출한다. 이 손실량은 강우-유출모형 내 여러 손실 중에 비중이 큰 침투 손실량과 같도록 취급할 수 있다. 여기서 초과우량 또는 유효우량 산출을 위해서 실용적으로 간편한 $\Phi$지수법, W지수법 또는 이의 수정법이 적용되어 왔다. 본 연구에서는 한 유역 내 강우 손실의 시간적 변화는 잘 알려진 Horton 침투 과정으로 간주하여 Horton 침투모형의 매개변수 값이 주어진 경우에 시간 단위별 침투손실 및 초과우량을 산출하는 절차와 적용 원칙을 제시하고 적용결과를 $\Phi$지수 방법의 적용결과에 비교하였다. 본 연구에서 산출한 강우사상에서 시간 단위의 Horton 침투량 값은 시간에 따라 지수적으로 감쇠되는 Horton 모형의 침투 과정을 잘 보여 준다.

Application of Percentile Rainfall Event for Analysis of Infiltration Facilities used by Prior Consultation for LID (Low Impact Development)

  • Kwon, Kyung-Ho;Song, Hye-Jin
    • KIEAE Journal
    • /
    • 제15권5호
    • /
    • pp.5-12
    • /
    • 2015
  • Purpose: Retention and infiltration of small and frequently-occurring rainfall by LID facilities account for a large proportion of the annual precipitation volume. Based on 4 standard facilities such as Porous Pavement, Infiltration Trench, Cylindrical Infiltration Well, Rectangular Infiltration Well by Seoul Metropolitan Handbook of the Prior Consultation for LID. The total retention volume of each facility was calculated according to the type and size. The Purpose of this study is to find out the quantitative relationship between Percentile Rainfall Event and Design Volume of Infiltration Facilities. Methode: For the estimation of Percentile Rainfall Event, Daily Precipitation of Seoul from 2005 to 2014 was sorted ascending and the distribution of percentile was estimated by PERCENTILE spreadsheet function. The managed Rainfall Depth and Percentile of each facility was calculated at the several sizes. In response to the rainwater charge volume of 5.5mm/hr by the Category "Private large site", the 3 types of facilities were planned for example. The calculated Rainfall Depth and Percentile were 54.4mm and 90% by the use of developed Calculation-Module based on the Spreadsheet program. Result: With this Module the existing Designed Infiltration volume which was introduced from Japan was simply converted to the Percentile-Rainfall-Event used in USA.

모형실험장치를 이용한 불포화토의 강우 침투특성 분석 (Analysis of rainfall infiltration characteristics for unsaturated soils using a column test equipment)

  • 박규보;채병곤;김경수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.736-742
    • /
    • 2010
  • This study was conducted to characterize on the relationships of rainfall intensity and infiltration rate of rainfall dependent on unit weight change in the gneissic weathered soil by a column test equipment. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at regular time intervals. Rainfall conditions including continuous rainfall and repeated rainfall were selected in order to know the effect of antecedent rainfall. In the condition of rainfall intensity 20mm/h and the unit weights of soil as $1.35g/cm^3$, $1.55g/cm^3$ and $1.61g/cm^3$, average rainfall infiltration rate was $2.814{\times}10^{-3}cm/sec$, $1.969{\times}10^{-3}cm/sec$ and $1.252{\times}10^{-3}cm/sec$ respectively. The higher rainfall intensity and lower unit weight of soil, the faster average infiltration rate. Overflow in the column was happened except rainfall condition of rainfall intensity 20mm and soil unit weight $1.35g/cm^3$. Increasing the soil unit weight, overflowed water was increased and occurrence time was faster.

  • PDF

밭 토양에서의 유효강우량 산정을 위한 전산모델 개발에 관한 연구 (A Study on Development of Computer model for Evaluating the Effective Rainfall on Upland Soil)

  • 고덕구;정하우
    • 한국농공학회지
    • /
    • 제24권1호
    • /
    • pp.63-72
    • /
    • 1982
  • To maintain an optimum condition for the plant growth on upland soil, the irrigation planning after the natural rainfall should be given enormous considerations on the rainfall effectiveness. This study has been intended to develop the computer model for estimating the effec- tiveness of the rainfall. The computer model should also estimated the infiltration due to the rainfall and the soil moisture deficiency at the root zone of the plant. For this purpose, the experiments of infiltration using rainfall simulator and the observations of the change of soil moisture content before and after rainfall were carried out. Needed input data for the developed model include final infiltration capacity and field capacity of the soil, porosity of the top soil, root depth of the plant, rainfall intensity and duration, and the Horton's decay coefficient. Among the needed input data for the developed model, final infiltration capacity and Horton's decay coefficient were determined by the experiments of infiltration. And from the result of the experiments, it is found that there is a great correlation between initial infiltration capacity and initial moisture content. And it is also found that the infiltration due to rainfall can be estimated with the Horton's equation. The developed model was tested by the experimental data with two rainfall intensities. Tests were conducted on the different root depths at each rainfall. Observed and estimated effective rainfalls were found to have great correlation. The result of the experiments showed that the effectiveness of the rainfall were 100%, so the comparisons were conducted by the comsumption rates of infiltration at each depth. The developed model can be also used for estimating the deficiency of rainfall, if the rainfall is not sufficient to the needed soil moisture. But, test was not carried out.

  • PDF

불포화토이론을 이용한 강우시 열차운전규제기준 개발 (The Development of Rail-Transport Operation Control based on Unsaturated Soil Mechanics Concept)

  • 김현기;신민호;김수삼
    • 한국방재학회 논문집
    • /
    • 제4권1호
    • /
    • pp.25-31
    • /
    • 2004
  • 강우침투는 철도성토사면의 불안정성을 유발하는 요인으로 작용하여 때때로 파괴의 결과로 나타나게 된다. 강우량과 철도성토사면 안정성과의 기본적인 상관성이 강우에 의한 성토사면의 불안정성을 분석하여 제안되었다. 사면내부로의 강우침투속도를 규명하기 위하여 실내시험을 수행하였으며, 강우침투실험결과에서 강우침투량은 강우침투속도가 사면경사에 의해 지배되기 때문에 저수지 등의 경우에 있어서의 침투와는 상당히 다르다는 것을 알 수 있었다. 이와 같은 견과에 근거하여 강우의 경계조건을 변화시켜 적용한 후, 다양한 수치해석을 수행하였다. 이를 통해 강우시 철도 성토사면의 전단강도, 포화도 그리고 간극수압의 변화를 예측할 수 있었으며, 철도사면의 안전율이 강우량-강우지수의 함수로서 표현될 수 있었다. 따라서 이 강우지수가 강우시 열차운전규제기준을 설정하기 위해 유용함을 밝혔다.

비정상강우를 적용한 자연사면에서의 포화깊이 산정 및 사면안정성 평가 (Saturation Depth and Slope Stability considering Unsteady Rainfall in Natural Slope)

  • 김상훈;김성필;손영환;허준;장병욱
    • 한국농공학회논문집
    • /
    • 제49권1호
    • /
    • pp.57-65
    • /
    • 2007
  • In Korea, most landslides occurr during the rainy season and have shallow failure planes parallel to the slope. For these types of rainfall-induced failures, the most important factor triggering slope unstability is decrease in the matric suction of unsaturated soils with increasing saturation depth by rainfall infiltration. For this reason, estimation of cumulative infiltration has a significance. In this study, infiltration rate and cumulative infiltration are estimated by using both Mein & Larson model based on Green-Ampt infiltration model and using modified Mein & Larson model to which unsteady rainfall is applied. According to the results, the modified model is more reasonable than Mein & Larson method itself in estimation of infiltration rate and saturation depth because of considering real pending condition.

Infiltration characteristics and hydraulic conductivity of weathered unsaturated soils

  • Song, Young-Suk;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.153-163
    • /
    • 2020
  • Laboratory experiments were conducted with two different soil conditions to investigate rainfall infiltration characteristics. The soil layer materials that were tested were weathered granite soil and weathered gneiss soil. Artificial rainfall of 80 mm/hr was reproduced through the use of a rainfall device, and the volumetric water content and matric suction were measured. In the case of the granite soil, the saturation velocity and the moving direction of the wetting front were fast and upward, respectively, whereas in the case of the weathered gneiss soil, the velocity and direction were slow and downward, respectively. Rainfall penetrated and saturated from the bottom to the top as the hydraulic conductivity of the granite soil was higher than the infiltration capacity of the artificial rainfall. In contrast, as the hydraulic conductivity of the gneiss soil was lower than the infiltration capacity of the rainfall, ponding occurred on the surface: part of the rainfall first infiltrated, with the remaining rainfall subsequently flowing out. The unsaturated hydraulic conductivity function of weathered soils was determined and analyzed with matric suction and the effective degree of saturation.

선행강우의 영향에 따른 불포화토의 침투특성 분석 (Effect of Antecedent Rainfall on Infiltration Characteristics in Unsaturated Soil)

  • 윤귀남;신호성;김윤태
    • 한국지반공학회논문집
    • /
    • 제31권8호
    • /
    • pp.5-15
    • /
    • 2015
  • 불포화 지반에서 선행강우에 의한 강우침투특성을 분석하기 위하여 국내 편마암 풍화토에 대한 일차원 실내강우 침투실험을 수행하였다. 춘천 및 충주지역 시료에 대한 실내모형실험에서 불포화토의 음의 간극수압은 강우 재하시 급격히 감소하고, 강우 종료후 점차 회복되었다. 강우강도가 증가함에 따라 침투속도가 증가하였으며, 선행강우시보다 본강우에서 침투속도가 빠른 것으로 나타났다. 이는 선행강우에 의하여 증가된 지반의 높은 포화도가 본강우시 강우침투속도를 증가시킨 것으로 사료된다. 특히 점토함유량이 많은 충주시료에서 음의 간극수압의 회복 속도와 침투속도가 느리게 나타났다. 유한요소 사면안정에 대한 수치해석 결과는 강우 침투에 의한 음의 간극수압의 감소에 따른 사면 안전율을 감소와 강우 종료후 간극수압의 확산에 의한 추가적인 사면 안정성 저감을 보여주고 있다. 사면의 안전율은 선행강우시 보다 본강우에서 더욱 감소하였다. 선행강우는 불포화지반의 초기 간극수압의 크기와 깊이별 패턴에 지대한 영향을 미치며, 이는 강우 사면의 안정성 해석에 고려해야 할 중요한 요소이다.