DOI QR코드

DOI QR Code

A Study on Optimal Design of 100 V Class Super-junction Trench MOSFET

비균일 100V 급 초접합 트랜치 MOSFET 최적화 설계 연구

  • Lho, Young Hwan (School of Railroad Electricity and Information Communication, Woosong University)
  • 노영환 (우송대학교 철도전기.정보통신학부)
  • Received : 2013.01.10
  • Published : 2013.07.25

Abstract

Power MOSFET (metal-oxide semiconductor field-effect transistor) are widely used in power electronics applications, such as BLDC (Brushless Direct Current) motor and power module, etc. For the conventional power MOSFET device structure, there exists a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a non-uniform super-junction (SJ) trench MOSFET (TMOSFET) structure for an optimal design is proposed in this paper. It is required that the specific on-resistance of non-uniform SJ TMOSFET is less than that of uniform SJ TMOSFET under the same breakdown voltage. The idea with a linearly graded doping profile is proposed to achieve a much better electric field distribution in the drift region. The structure modelling of a unit cell, the characteristic analyses for doping density, and potential distribution are simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the non-uniform SJ TMOSFET shows the better performance than the uniform SJ TMOSFET in the specific on-resistance at the class of 100V.

전력 MOSFET(산화물-반도체 전위 효과 트랜지스터)는 BLDC 모터와 전력 모듈 등에 광범위하게 사용하고 있다. 기존 전력 MOSFET 구조는 온-저항과 항복전압사이에 절충(tradeoff)이 필요하다. 이러한 절충을 하지 않고 최적화를 하기위해 비균일 초접합 트랜치 MOSFET 를 설계하는데 동일한 항복전압에서 균일 초접합 트랜치 MOSFET보다 낮은 온-저항을 갖도록한다. 이를 위해 드리프트 영역에서 우수한 전기장 분포를 달성하기 위하여 선형구조의 도핑 프로파일을 제안하고, 단위 셀 설계, 도핑농도의 특성분석, 전위분포를 SILVACO TCAD 2D인 Atlas 소자 소프트웨어를 사용하여 시뮬에이션을 수행하였다. 결과로 100V 급 MOSFET에서 비균일 초접합 트랜치 MOSFET가 균일 초접합 트랜치 MOSFET보다 온-저항에서 우수한 특성을 보여주고 있다.

Keywords

References

  1. B. J. Baliga, Advanced Power MOSFET Concepts, New York Springer-Science, 2010, pp.166, pp.323-354, pp.381-396.
  2. Ying Wang, Hai-Fan Hu, Wen-Li Jiao, and Chao Cheng, "Gate Enhanced Power UMOSFET With Ultra Low On-Resistance," IEEE Electron Device Letters, Vol. 31, No. 4, April 2010.
  3. Young Hwan Lho and Yil-Suk Yang, "Design of 100-V Super-Junction Trench Power MOSFET with Low On-Resistance," ETRI Journal, Vol. 34, No. 1, Feb. 2012 https://doi.org/10.4218/etrij.12.0211.0251
  4. Yu Chen, Yung C. Liang, and Ganesh S. Samudra, "Design of Gradient Oxide Bypassed Super-junction Power MOSFET Devices," IEEE Transactions, Vol. 22. No. 4, July 2007.
  5. Jongdae Kim, Tae Moon Roh, Sang-Gi Kim, Il-Yong Park, Bun Lee, "A Novel Techinique for Fabricating High Reliable Trench DMOSFETs Using Self-Align Technique and Hydrogen Annealing," IEEE Transactions on Electron Devices, Vol. 50, No. 2, 2003, pp. 378-383. https://doi.org/10.1109/TED.2002.807442
  6. S.-G. Kim et al., "High-Density Nano-Scale N-Channel Trench-Gated MOSFETs Using the Self-aligned Technique," J. Korean Physical Society, vol. 57, no. 4, Oct. 2010, pp. 802-805 https://doi.org/10.3938/jkps.57.802
  7. J. A. Yedinack, et al., "Super-Junction Structure and Fabricating Methodologies for Power Devices," Korean Patent: 10-2010-0083153
  8. Jong Man Yun, "Development Status and Prospect of Super Junction MOSFET," The Magazine of the IEEK, Vol. 37, No. 8, pp. 826-841, Aug.. 2010 (in Korean).
  9. Gerald Deboy and Florin Udrea, "Super-junction devices & technologies-Benefits and Limitations of a Revolutionary Step in Power Electronics," EPE2007, Aalborg, Denmark, 2-5, September 2007.
  10. SILVACO TCAD manual Atlas.