DOI QR코드

DOI QR Code

Study of Tungsten Nitride Diffusion Barrier for Various Nitrogen Gas Flow Rate by Employing Nano-Mechanical Analysis

Nano-Mechanics 분석을 통한 질화 텅스텐 확산방지막의 질소 유량에 따른 연구

  • Kwon, Ku Eun (Department of Nano & Electronic Physics, Kookmin University) ;
  • Kim, Sung Joon (Department of Nano & Electronic Physics, Kookmin University) ;
  • Kim, Soo In (Department of Nano & Electronic Physics, Kookmin University) ;
  • Lee, Chang Woo (Department of Nano & Electronic Physics, Kookmin University)
  • 권구은 (국민대학교 나노전자물리학과) ;
  • 김성준 (국민대학교 나노전자물리학과) ;
  • 김수인 (국민대학교 나노전자물리학과) ;
  • 이창우 (국민대학교 나노전자물리학과)
  • Received : 2013.04.10
  • Accepted : 2013.05.22
  • Published : 2013.07.30

Abstract

Many studies have been conducted for preventing from diffusion between silicon wafer and metallic thin film due to a decrease of line-width and multi-layer thin film for miniaturization and high integration of semiconductor. This paper has focused on the nano-mechanical property of diffusion barrier which sample is prepared for various gas flow rate of nitrogen with tungsten (W) base from 2.5 to 10 sccm. The deposition rate, resistivity and crystallographic properties were measured by a ${\beta}$-ray back-scattering spectroscopy, 4-point probe and x-ray diffraction (XRD), respectively. We also has investigated the nano-mechanical property using the nano-indenter. As a result, the surface hardness of W-N thin film was increased rapidly from 10.07 to 15.55 GPa when the nitrogen gas flow was increased from 2.5 to 5 sccm. And the surface hardness of W-N thin film had 12.65 and 12.77 GPa at the nitrogen gas flow of 7.5 and 10 sccm respectively. These results were decreased by the comparison with the W-N thin film at nitrogen gas flow of 5 sccm. It was inferred that these severe changes were caused by the stoichiometric difference between the crystalline and amorphous state in W-N thin film. In addition, these results were caused by increased compressive stress.

반도체 소자의 소형화, 고집적화로 박막의 다층화 및 선폭 감소로 인한 실리콘 웨이퍼와 금속 박막 사이의 확산을 방지하기 위한 많은 연구가 이루어지고 있다. 본 연구는 tungsten (W)을 주 물질로 증착시 nitrogen (N)의 유량을 2.5~10 sccm으로 변화시키며 증착된 확산방지막의 nano-mechanics 특성에 대해 연구하였다. 증착률, 비저항 및 결정학적 특성을 ${\beta}$-ray backscattering spectroscopy, 4-point probe, X-ray diffraction (XRD)을 이용하여 측정한 후 Nano-indenter를 사용하여 nano-mechanics 특성을 조사하였다. 그 결과 질소 가스 유량이 5 sccm 포함된 박막에서 표면 경도(surface hardness)는 10.07 에서 15.55 GPa로 급격하게 증가하였다. 이후 질소가스의 유량이 7.5 및 10 sccm에서는 표면 경도가 각각 12.65와 12.77 GPa로 질소 가스 유량이 5 sccm인 박막보다 표면경도가 상대적으로 감소하였다. 이는 박막 내 결정질과 비정질의 W과 N의 결합 비율의 차이에 의한 영향으로 생각되며, 또한 압축응력에 기인한 스트레스 증가가 원인으로 판단된다.

Keywords

References

  1. J. F. Marco, J. R. Gancedo, M. A. Auger, O. Sanchez, and J. M. Albella, Surf. Interface Anal. 37, 1082 (2005). https://doi.org/10.1002/sia.2083
  2. S. Veprek, M. J. G. Veprek-Heijman, Surf. Coat. Technol. 202, 5063 (2008). https://doi.org/10.1016/j.surfcoat.2008.05.038
  3. S. I. Kim and C. W. Lee, J. Korean Vac. Soc. 16, 348 (2008).
  4. S. I. Kim and C. W. Lee, J. Korean Vac. Soc. 17, 109 (2008). https://doi.org/10.5757/JKVS.2008.17.2.109
  5. S. I. Kim and C. W. Lee, J. Korean Vac. Soc. 17, 518 (2008). https://doi.org/10.5757/JKVS.2008.17.6.518
  6. J. Y. Kim, H. W. O, S. I. Kim, S. H. Choe, and C. W. Lee, J. Korean Vac. Soc. 20, 200 (2011). https://doi.org/10.5757/JKVS.2011.20.3.200
  7. S. Guruvenket and G. Mohan Rao, Matert. Sci. Eng. B 106, 172 (2004). https://doi.org/10.1016/j.mseb.2003.09.016
  8. R. Eckea, S. E. Schulza, M. Heckerb, and T. Gessner, Microelectronic Eng. 64, 261 (2002). https://doi.org/10.1016/S0167-9317(02)00798-0
  9. M. F. Doerner and W. D. Nix, J. Mater. Res. 1, 601 (1986). https://doi.org/10.1557/JMR.1986.0601
  10. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992). https://doi.org/10.1557/JMR.1992.1564
  11. I. N. Sneddon, J. Eng. Sci. 3, 47 (1965). https://doi.org/10.1016/0020-7225(65)90019-4
  12. D. Olteanu and L. Freeman, Quality Engineering 22, 256 (2010). https://doi.org/10.1080/08982112.2010.505219