DOI QR코드

DOI QR Code

0.5 vol% TiO2 나노분말을 분산시킨 n형 Bi2(Te0.9Se0.1)3 가압소결체의 열전특성

Thermoelectric Properties of the n-type Bi2(Te0.9Se0.1)3 Processed by Hot Pressing with Dispersion of 0.5 vol% TiO2 Nanopowders

  • 박동현 (홍익대학교 신소재공학과) ;
  • 오태성 (홍익대학교 신소재공학과)
  • Park, D.H. (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, T.S. (Department of Materials Science and Engineering, Hongik University)
  • 투고 : 2013.03.21
  • 심사 : 2013.03.28
  • 발행 : 2013.03.30

초록

용해/분쇄법으로 제조한 n형 $Bi_2(Te_{0.9}Se_{0.1})_3$ 분말에 0.5 vol% $TiO_2$ 나노분말을 분산시켜 가압소결 후, $TiO_2$ 나노분말의 분산이 $Bi_2(Te_{0.9}Se_{0.1})_3$ 가압소결체의 열전특성에 미치는 영향을 분석하였다. $Bi_2(Te_{0.9}Se_{0.1})_3$ 가압소결체는 $2.93{\times}10^{-3}/K$의 최대 성능지수 및 1.02의 최대 무차원 성능지수의 우수한 열전특성을 나타내었다. 0.5 vol% $TiO_2$ 나노분말의 첨가에 의해 $Bi_2(Te_{0.9}Se_{0.1})_3$ 가압소결체의 최대 성능지수가 $2.09{\times}10^{-3}/K$로 감소하였으며, 최대 무차원 성능지수는 0.68로 저하하였다.

The n-type $Bi_2(Te_{0.9}Se_{0.1})_3$ powders, which were fabricated by melting/grinding method and dispersed with 0.5 vol% $TiO_2$ nanopowders, were hot-pressed in order to investigate the effects of $TiO_2$ dispersion on the thermoelectric properties of the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$. Excellent thermoelectric properties such as a maximum figure-of-merit of $2.93{\times}10^{-3}/K$ and a maximum dimensionless figure-of-merit of 1.02 were obtained for the hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$. With dispersion of 0.5 vol% $TiO_2$ nanopowders, the maximum figure-of-merit and the maximum dimensionless figure-of-merit decreased to $2.09{\times}10^{-3}/K$ and 0.68, respectively.

키워드

참고문헌

  1. D. H. Park, M. R. Roh, M. Y. Kim and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_2(Te,Se)_3$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2010).
  2. M. R. Roh, J. Y. Choi and T. S. Oh, "Thermoelectric Properties of the Hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$ with Dispersion of Tungsten Powders", J. Microelectron. Packag. Soc., 18(4), 55 (2011).
  3. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys", Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
  4. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouki and A. Majumdar, "Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedded Nanoparticles in Crystalline Semiconductors", Phys. Review Lett., 96, 045901 (2006). https://doi.org/10.1103/PhysRevLett.96.045901
  5. M. Y. Kim and T. S. Oh, "Effects of Annealing in Reduction Ambient on Thermoelectric Properties of the $(Bi,Sb)_2Te_3$ Thin Films Processed by Vacuum Evaporation", J. Microelectron. Packag. Soc., 15(3), 1 (2008).
  6. K. Y. Lee and T. S. Oh, "Thermoelectric Characteristics of the Electroplated Bi-Te Films and Photoresist Process for Fabrication of Micro Thermoelectric Devices", J. Microelectron. Packag. Soc., 14(2), 9 (2007).
  7. D. R. Rowe, "CRC Handbook of Thermoelectrics", CRC Press, Boca Raton (1995).
  8. "산업부문 에너지 효율의 국제비교와 요인분해 및 시사점", e-KIET 산업경제정보, 제 437호 (2009).
  9. 이성근, "IEA 산업부문 에너지 통계 및 효율지표 작성과 시사점", KEEI Issue Paper, 1, 1 (2007).
  10. W. M. Yim and F. D. Rosi, "Compound Telluride and Their Alloys for Peltier Cooling-A Review", J. Solid State Electronics, 15, 1121 (1972). https://doi.org/10.1016/0038-1101(72)90172-4
  11. H. J. Kim, T. S. Oh and D. B. Hyun, "Thermoelectric Properties of the Hot-Pressed $Bi_2(Te_{1-x}Se_x)_3$ Alloys with the $Bi_2Se_3$ Content", Korean J. Mater. Res., 8, 408 (1998).
  12. H. J. Kim, J. S. Choi, D. B. Hyun and T. S. Oh, "Microstructure and Thermoelectric Properties of n-Type $Bi_2(Te_{0.9}Se_{0.1})_3$ Fabricated by Mechanical Alloying and Hot Pressing Methods", Korean J. Mater. Res., 7, 40 (1997).
  13. H. J. Kim, J. S. Choi, D. B. Hyun and T. S. Oh, "Powder Characteristics and Thermoelectric Properties of n-Type $Bi_2(Te_{0.95}Se_{0.05})_3$ Fabricated by Mechanical Process", J. Korean Inst. Met. Mater., 35, 223 (1997).
  14. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J-P. Fleurial and P. Gogna, "New Directions for Low-Dimensional Thermoelectric Materials", Adv. Mater., 19, 1 (2007).
  15. X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu and X. B. Zhang, "Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-containing Nanocomposites", Appl. Phys. Lett., 86, 062111 (2005). https://doi.org/10.1063/1.1863440
  16. X. B. Zhao, S. H. Yang, Y. Q. Cao, J. L. Mi, Q. Zhang and T. J. Zhu, "Synthesis of Nanocomposites with Improved Thermoelectric Properties", J. Electron. Mater., 38, 1017 (2009). https://doi.org/10.1007/s11664-009-0698-2
  17. J-F. Li and J. Liu, "Effect of Nano-SiC Dispersion on Thermoelectric Properties of $Bi_2Te_3$ Polycrystals", Phys. Stat. Sol., 203, 3768 (2006). https://doi.org/10.1002/pssa.200622011
  18. H. L. Ni, X. B. Zhao, T. J. Zhu, X. H. Ji and J. P. Tu, "Synthesis and Thermoelectric Properties of $Bi_2Te_3$ Based Nanocomposites", J. Alloys & Compounds, 397, 317 (2005). https://doi.org/10.1016/j.jallcom.2005.01.046
  19. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, J. Y. Ming and G. Chen, "The Promise of Low-Dimensional Thermoelectric Materials", Microscale Thermophysical Engineering, 3, 89 (1999). https://doi.org/10.1080/108939599199774
  20. H. P. Ha, D. B. Hyun, J. S. Hwang and T. S. Oh, "Band-gap Energy and Thermoelectric Properties of 90% $Bi_2Te_3$-10% $Bi_2Se_3$ Single Crystals", Korean J. Mater. Res., 9(4), 349 (1999).
  21. T. S. Oh, D. B. Hyun and N. V. Kolomoets, "Thermoelectric Properties of Hot-pressed $(Bi,Sb)_2(Te,Se)_3$ Alloys", Scripta Mater., 42, 849 (2000). https://doi.org/10.1016/S1359-6462(00)00302-X
  22. J. S. Hwang, D. B. Hyun, T. S. Oh, E. H. Lee and D. H. Lee, "Thermoelectric Properties of CuBr-doped n-type 85% $Bi_2Te_3$-15% $Bi_2Se_3$ Thermoelectric Materials", J Korean Inst. Met. Mater., 36(3), 454 (1998).
  23. D. B. Hyun, J. S. Hwang, T. S. Oh, B. C. Yoo and C. W. Hwang, "Electrical and Thermoelectric Properties of SbI3-doped 85% $Bi_2Te_3$-15% $Bi_2Se_3$ Thermoelectric Semiconductors", Korean J. Mater. Res., 8(5), 413 (1998).

피인용 문헌

  1. 박막레그 직경에 따른 열전박막모듈의 열에너지 하비스팅 특성 비교 vol.25, pp.4, 2013, https://doi.org/10.6117/kmeps.2018.25.4.067