Abstract
A robust optimization is only one of the ways to minimize the effects of variances in design variables on the objective functions at the preliminary design stage. To predict the variances and to formulate the probabilistic constraints are the most important procedures for the robust optimization formulation. Though several methods such as the process capability index and the six sigma technique were proposed for the prediction and formulation of the variances and probabilistic constraints, respectively, there are few attempts using a percent defective which has been widely applied in the quality control of the manufacturing process for probabilistic constraints. In this study, the robust optimization for a lower control arm of automobile vehicle was carried out, in which the design space showing the mean and variance sensitivity of weight and stress was explored before robust optimization for a lower control arm. The 2nd order Taylor expansion for calculating the standard deviation was used to improve the numerical accuracy for predicting the variances. Simplex algorithm which does not use the gradient information in optimization was used to convert constrained optimization into unconstrained one in robust optimization.
강건 최적화 기법은 설계 초기 단계부터 설계변수의 변동이 목적함수에 미치는 효과를 최소화할 수 있는 유일한 방법이다. 강건 최적화의 정식화를 위해서는 분산을 정확히 예측하고 확률제한조건을 정식화하는 것이 가장 중요한 과정이 된다. 분산 및 확률제한조건을 예측하고 정식화하기 위한 방법으로 공정능력지수 및 식스시그마 기법과 같은 여러 가지 방법이 적용되고 있으나, 실제 공정에서 널리 적용되는 불량률을 이용한 확률제한조건 처리 기법에 대한 연구는 아직까지 전무한 상태이다. 본 연구에서는 자동차 로워암의 무게와 최대응력의 평균과 표준편차에 대한 설계영역을 탐색하고, 이후 로워암의 강건 최적화를 수행하였다. 변동을 예측하기 위한 표준편차의 계산은 2 차 테일러 전개를 통해 수치적인 정확도를 기하였다. 강건 최적화는 설계변수의 불연속성을 고려하기 위하여 최적화 과정에서 미분 정보를 적용하지 않은 심플렉스 알고리즘을 적용하였다.