DOI QR코드

DOI QR Code

환경·생태학적 기법을 이용한 혼합폐수 처리장의 생물학적 처리공정 내의 미생물 군집 특성 분석

Analysis of Microbial Community Structure in Biological Wastewater Treatment Process of Mixed Wastewater Treatment Facility using Environmental·Ecological Technique

  • 손형식 (부산대학교 미생물학과) ;
  • 이상준 (부산대학교 미생물학과) ;
  • 손희종 (부산시 상수도사업본부 수질연구소)
  • Son, Hyeng-Sik (Department of Microbiology, Pusan National University) ;
  • Lee, Sang-Joon (Department of Microbiology, Pusan National University) ;
  • Son, Hee-Jong (Water Quality Institute, Busan Water Authority)
  • 투고 : 2013.03.13
  • 심사 : 2013.03.28
  • 발행 : 2013.04.27

초록

The bacterial community structure in a biological reactor fed influent from a wastewater treatment system was investigated by denaturing gradient gel electrophoresis (DGGE) and in situ hybridization. Sludges were collected from three biological reactors (aerobic, oxic, and anoxic tanks) at the M wastewater treatment facility (WTF). The influent of the MWTF consisted of mixed tannery wastewater (40~65%) and seafood wastewater (35~60%). The treatment processes resulted in a removal efficiency for BOD (biochemical oxygen demand) and COD (chemical oxygen demand) of 83.6~98.2% and 72.8~84.6%, respectively for tannery wastewater than for seafood wastewater resulted in greater survival of biomass in the biological reactors and a higher removal of BOD, COD, and T-N of about 8~18%. In contrast, addition of greater amounts of seafood wastewater decreased the amount of biomass in the bioreactors due to the increasing concentration of chromium from that wastewater and it also. The dominant bacterial species during the high seafood wastewater input period were Burkholderia cepacia (JX901049) and an uncultured bacterium (JF247555), while Pseudomonas geniculata (HQ256559) was dominant during the high tannery wastewater input period. Flavobacteriumsp. BF.107 (FM173271) and Hyphomicrobium zavarzinii (Y14306) were dominant under anoxic conditions.

키워드

참고문헌

  1. Eikelboom, D. H. (1975) Filamentous organisms observed in activated sludge. Water Res. 9: 365-388. https://doi.org/10.1016/0043-1354(75)90182-7
  2. Richard, M., O. Hao, and D. Jenkins (1985) Growth kinetics of Sphaerotilus species and their significance in activated sludge bulking. J. Water Pollut. Con. F. 57: 68-81.
  3. Andreasen, K. and P. H. Nielsen (1997) Application of microautoradiography to the study of substrate uptake by filamentous microorganisms in activated sludge. Appl. Environ. Microbiol. 63: 3662-3668.
  4. Nielsen, P. H., K. Andreasen, M. Wagner, L. L. Blackall, H. Lemmer, and R. J. Seviour (1998) Variability of type 021N in activated sludge as determined by in situ substrate uptake pattern and in situ hybridization with fluorescent rRNA targeted probes. Water Sci. Technol. 37: 423-440. https://doi.org/10.1016/S0273-1223(98)00170-X
  5. Eikelboom, D. H. (2000) Process Control of Activated Sludge Plants by Microscopic Investigation. IWA Publishing, London.
  6. Ohashi, A., D. G. Viraj de Silva, B. Mobarry, J. A. Manem, D. A. Stahl, and B. E. Rittmann (1995) Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs. Water Sci. Technol. 32: 75-84.
  7. Zhang, T. C. and P. L. Bishop (1996) Evaluation of substrate and pH effects in a nitrifying biofilm. Water Environ. Res. 68: 1107-1115. https://doi.org/10.2175/106143096X128504
  8. Lazarova, V., D. Bellahcen, J. Manem, D. A. Stahl, and B. E. Rittmann (1999) Influence of operating conditions on population dynamics in nitrifying biofilms. Water Sci. Technol. 39: 5-11. https://doi.org/10.1016/S0273-1223(99)00144-4
  9. Kloep, F., I. Roske, and T. R. Neu (2000) Performance and micro-bial structure of a nitrifying fluidized-bed reactor. Water Res. 34: 311-319. https://doi.org/10.1016/S0043-1354(99)00123-2
  10. Kim, D. J., D. W. Han, S. C. Lee, B. G. Park, I. Kwon, C. K. Sung, and W. C. Park (2002) Wastewater treatment and microbial structure analysis by fluorescence in situ hybridization in a biofilm reactor. Korean J. Biotechnol. Bioeng. 17: 80-87.
  11. Wong, M. T., T. Mino, R. J. Seviour, M. Onuki, and W. T. Liu (2005) In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res. 39: 2901-2914. https://doi.org/10.1016/j.watres.2005.05.015
  12. Araya, R., K. Tani, T. Tagaki, N. Yamaguchi, and M. Nasu (2003) Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol. Ecol. 43: 111-119. https://doi.org/10.1111/j.1574-6941.2003.tb01050.x
  13. Patil, S. S., M. S. Kumar, and A. S. Ball (2010) Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Appl. Microbiol. Biotechnol. 87: 353-363. https://doi.org/10.1007/s00253-010-2539-x
  14. Dong, X. and G. B. Reddy (2010) Soil bacterial communities in constructed wetlands treated with swine wastewater using PCRDGGE technique. Bioresour. Technol. 101: 1175-1182. https://doi.org/10.1016/j.biortech.2009.09.071
  15. Mino, T., H. Satoh, M. Onuki, T. Akiyama, T. Nomura, and T. Matsuo (2001) Strategic approach for characterization of bacterial community in enhanced biological phosphate removal (EBPR) process," In: T. Matsuo, K. Hanaki, S. Takizawa, and H. Satoh (Eds.), Advances in Water and Wastewater Treatment Technology: Molecular Technology, Nutrient Removal, Sludge Reduction and Environmental Health, Elsevier, London, UK.
  16. Nielsen, P. H., C. Kragelund, R. J. Seviour, and J. L. Nielsen (2009) Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol. Rev. 33: 969-998. https://doi.org/10.1111/j.1574-6976.2009.00186.x
  17. Jang, A., P. L. Bishop, S. Okabe, S. G. Lee, and I. S. Kim (2002) Effect of dissolved oxygen concentration on the biofilm and in situ analysis by fluorescence in situ hybridization (FISH) and microelectrodes. Water Sci. Technol. 47: 49-57.
  18. Wani, R., K. M. Kodam, K. R. Gawai, and P. K. Dhakephalkar (2007) Chromate reduction by Burkholderia cepacia MCMB-821, isolated from the pristine habitate of alkaline crater lake, Appl. Microbial. Biotechnol. 75: 627-632. https://doi.org/10.1007/s00253-007-0862-7
  19. Son, H. S., H. J. Son, M. Kim, E. Y. Ryu, G. Lee, and S. J. Lee (2010) Changes of microbial community structure according to a changes of season and influent characteristics in biological wastewater treatment. Korean J. KSEE. 32: 780-786.
  20. Kim, G. T., G. Webster, J. W. Wimpenny, B. H. Kim, H. J. Kim, and A. J. Weightman (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J. Appl. Microbiol. 101: 698-710. https://doi.org/10.1111/j.1365-2672.2006.02923.x
  21. Thompson, J. D., D. G. Higgins, and T. J. Gibson (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weightmatrix choice. Nucleic. Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  22. Ryu, E. Y., M. Kim, and S. J. Lee (2011) Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge. J. Microbiol. Biotechnol. 21: 187-191. https://doi.org/10.4014/jmb.1008.08019
  23. Wagner, M., R. Amann, H. Lemmer, and K. Scheleifer (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59: 1520-1525.
  24. Glckner, F. O., B. M. Fuchs, and R. Amann (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65: 3721-3726.
  25. Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi, and K. H. Schleifer (1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbiol. 60: 792-800.
  26. Wani, P. A., M. S. Khan, and A. Zaidi (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth chromium amended soil. Biotechnol. Lett. 30: 159-163.
  27. Shi, L., K. M. Rosso, J. M. Zachara, and J. K. Fredrickson (2012) Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective. Biochem. Soc. Trans. 40: 1261-1267. https://doi.org/10.1042/BST20120098
  28. Rlling, W. F., B. M. van Brewkelen, M. Braster, B. Lin, and H. W. van Verseveld (2001) Relationships between microbial community structure and hydrochemistry in a landfill leachate-populated aquifer. Appl. Environ. Microbiol. 67: 4619-4629. https://doi.org/10.1128/AEM.67.10.4619-4629.2001
  29. Chneby, D., L. Philippot, A. Hartmann, C. Henault, and J. C. Germon (2000) 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soil. FEMS Microbiol. Ecol. 34: 121-128. https://doi.org/10.1111/j.1574-6941.2000.tb00761.x
  30. Otlanabo, N. L. (1993) Denitrification of Ground Water for Potable Purposes. WRC report 403/1/93.
  31. Zumft, W. G. (1992) The denitrifying prokaryotes, In: A. Balows, H. G. Truper, M. Dworkim, W. Harder and K. H. Schleifer (eds.), The Prokaryotes: Springer-verlag, New York, USA.