DOI QR코드

DOI QR Code

Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy

  • Ylmen, Rikard (Department of Chemistry and Biotechnology, Environmental Inorganic Chemistry, Chalmers University of Technology) ;
  • Jaglid, Ulf (Department of Chemistry and Biotechnology, Environmental Inorganic Chemistry, Chalmers University of Technology)
  • 투고 : 2012.08.27
  • 심사 : 2013.04.04
  • 발행 : 2013.06.30

초록

Carbonation is a natural ageing process for cement. This study focuses on how the carbonation rate varies with selected hydration times and atmospheric conditions during the early stages of reacting dried cement paste. Diffuse reflection Fourier transform infrared spectroscopy is shown to be a suitable technique to monitor the formation of carbonates in cement. Combined with a previously developed freeze drying technique, carbonation can be studied at specific hydration stages. In ambient air both calcium hydroxide and calcium silicate hydrate (C-S-H) in cement are carbonated. Increased hydration time enhances the carbon dioxide uptake, which indicates that the calcium in the hydration products reacts more easily than the calcium in the clinker phase. In a humid $CO_2$ atmosphere, the carbonation process is so pronounced that it decomposes C-S-H into calcium carbonate and silica. In a moist $N_2$ atmosphere no carbonation occurs, but the sulfate chemistry of the cement seems to be affected due to the formation of ettringite.

키워드

참고문헌

  1. Andersen, F. A., & Ljerka Brecevic, L. (1991). Infrared spectra of amorphous and crystalline calcium carbonate. Act Chemica Scandinavica, 45, 1018-1024. https://doi.org/10.3891/acta.chem.scand.45-1018
  2. Bjornstrom, J. (2005). Influence of nano-silica and organic admixtures on cement hydration: A mechanistic investigation. PhD thesis, Department of Chemistry, Goteborg University, Gothenburg, Sweden.
  3. Clarkson, J. R., Price, T. J., & Adams, C. J. (1992). Role of metastable phases in the spontaneous precipitation of calcium carbonate. Journal of the Chemical Society, Faraday Transactions, 88(2), 243-249.
  4. Coleyshaw, E. E., Crump, G., & Griffith, W. P. (2003). Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite. Spectrochimica Acta Part A, 59, 2231-2239. https://doi.org/10.1016/S1386-1425(03)00067-2
  5. Delgado, A. H., Paroli, R. M., & Beaudoin, J. J. (1996). Comparison of IR techniques for the characterization of construction cement minerals and hydrated products. Applied Spectroscopy, 50(8), 970-976. https://doi.org/10.1366/0003702963905312
  6. Frech, R., Wang, E. C., & Bates, J. B. (1980). The I.R. and Raman spectra of CaCO3 (aragonite). Spectrochimica Acta, 36A, 915-919.
  7. Griffiths, P. R., de Haseth, J. A., & Fourier, (2007). Transform infrared spectrometry (2nd ed., p. 349). Hoboken, NJ:Wiley.
  8. Grounds, T., Midgley, H. G., & Nowell, D. V. (1988). Carbonation of ettringite by atmospheric carbon dioxide. Thermochimica Acta, 135, 347-352. https://doi.org/10.1016/0040-6031(88)87407-0
  9. Gunasekaran, S., Anbalagan, G., & Pandi, S. (2006). Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy, 37, 892-899. https://doi.org/10.1002/jrs.1518
  10. Houst, Y. F. (1996). The role of moisture in the carbonation of cementitious materials. Internationale Zeitschrift fur Bauinstandsetzen, 1, 49-66.
  11. Lam, R. S. K., Charnock, J. M., Lennie, A., & Meldrum, F. C. (2007). Synthesis-dependant structural variations in amorphou calcium carbonate. CrystEngComm, 9, 1226-1236. https://doi.org/10.1039/b710895h
  12. Mejlhede Jensen, O., Freiesleben Hansen, P., Lachowski, E. E., & Glasser, F. P. (1999). Clinker mineral hydration at reduced relative humidities. Cement and Concrete Research, 29, 1505-1512. https://doi.org/10.1016/S0008-8846(99)00132-5
  13. Mollah, M. Y. A., Kesmez, M., & Cocke, D. L. (2003). An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/S) of arsenic(V) in Portland cement type-V. Science of the Total Environment, 325, 255-262.
  14. Pajares, I., Martinez-Ramirez, S., & Blanco-Varela, M. T. (2003). Evolution of ettringite in presence of carbonate, and silicate ions. Cement & Concrete Composites, 25, 861-865. https://doi.org/10.1016/S0958-9465(03)00113-6
  15. Richard, T., Mercury, L., Poulet, F., & d'Hendecourt, L. (2006). Diffuse reflectance infrared Fourier transform spectroscopy as a tool to characterise water in adsorption/confinement situations. Journal of Colloid and Interface Science, 304, 125-136. https://doi.org/10.1016/j.jcis.2006.08.036
  16. Rutt, H. N., & Nicola, J. H. (1974). Raman spectra of carbonates of calcite structure. Journal of Physics C Solid State Physics, 7, 4522-4528. https://doi.org/10.1088/0022-3719/7/24/015
  17. Shivkumara, C., Singh, P., Gupta, A., & Hegde, M. S. (2006). Synthesis of vaterite $CaCO_3$ by direct precipitation using glycine and L-alanine as directing agents. Materials Research Bulletin, 41, 1455-1460. https://doi.org/10.1016/j.materresbull.2006.01.026
  18. Trezza, M. A., & Lavat, A. E. (2001). Analysis of the system 3CaO.$Al_2O_3$-$CaSO_4$.$2H_2O$-$CaCO_3$-$H_2O$ by FT-IR spectroscopy. Cement and Concrete Research, 31, 869-872. https://doi.org/10.1016/S0008-8846(01)00502-6
  19. Vagenas, N. V., Gatsouli, A., & Kontoyannis, C. G. (2003). Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta, 59, 831-836. https://doi.org/10.1016/S0039-9140(02)00638-0
  20. Vazquez-Moreno, T., & Blanco-Varela, M. T. (1981). Table of infrared frequencies and absorption spectra of compound related to cement chemistry. Materiales de Construccion, 182, 31-48.
  21. Xiantuo, C., & Ruizhen, Z. (1994). Kinetic study of ettringite carbonation reaction. Cement and Concrete Research, 24, 1383-1389. https://doi.org/10.1016/0008-8846(94)90123-6
  22. Xyla, A. G., & Koutsoukos, P. G. (1989). Quantitative analysis of calcium carbonate polymorphs by infrared spectroscopy. Journal of the Chemical Society, Faraday Transactions, 185(10), 3165-3172.
  23. Ylmen, R., Jaglid, U., Steenari, B.-M., & Panas, I. (2009). Early hydration and setting of Portland cement monitored by IR, SEM and Vicat Techniques. Cement and Concrete Research, 39, 433-439. https://doi.org/10.1016/j.cemconres.2009.01.017
  24. Ylmen, R., Larsson, K., Jaglid, U., Panas, I., & Steenari, B.-M. (2008). DR-FTIR method for the study of early hydration of cement. In Conference Proceedings for 'SCC 2008:Challenges and Barriers to Application, Chicago, IL, November 10-12.
  25. Yu, P., Kirkpatrick, R. J., Poe, B., McMillan, P. F., & Cong, X. (1999). Structure of calcium silicate hydrate (C-S-H):near-, mid-, and far-infrared spectroscopy. Journal of American Ceramic Society, 82(3), 742-748.

피인용 문헌

  1. Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash vol.9, pp.3, 2013, https://doi.org/10.1007/s40069-015-0111-x
  2. Resistance of fly ash-Portland cement blends to thermal shock vol.28, pp.2, 2016, https://doi.org/10.1680/adcr.15.00030
  3. Acid resistance of calcium aluminate cement-fly ash F blends vol.28, pp.7, 2013, https://doi.org/10.1680/jadcr.15.00139
  4. Effects of CO2 and temperature on the structure and chemistry of C-(A-)S-H investigated by Raman spectroscopy vol.7, pp.77, 2013, https://doi.org/10.1039/c7ra07266j
  5. Carbonation resistance of concrete: limestone addition effect vol.69, pp.2, 2013, https://doi.org/10.1680/jmacr.16.00371
  6. Bond Durability of Carbon-Microfiber-Reinforced Alkali-Activated High-Temperature Cement Adhering to Carbon Steel vol.9, pp.2, 2017, https://doi.org/10.4236/eng.2017.92007
  7. Comparative studies of long-wave laser-induced breakdown spectroscopy emissions excited at 1064 µm and eye-safe 1574 µm vol.25, pp.7, 2013, https://doi.org/10.1364/oe.25.007238
  8. Role of Tartaric Acid in Chemical, Mechanical and Self-Healing Behaviors of a Calcium-Aluminate Cement Blend with Fly Ash F under Steam and Alkali Carbonate Environments at 270 °C vol.10, pp.4, 2017, https://doi.org/10.3390/ma10040342
  9. Characterization of eco-substituted cement containing waste ground calcined clay brick vol.44, pp.11, 2017, https://doi.org/10.1139/cjce-2016-0537
  10. Self-repairing properties of OPC clinker/natural zeolite blend in water and alkali carbonate environments at 270°C vol.30, pp.1, 2013, https://doi.org/10.1680/jadcr.16.00136
  11. Comparative Study of Hydration Kinetics of Cement and Tricalcium Silicate Using Terahertz Spectroscopy and Density Functional Theory Simulations vol.39, pp.7, 2018, https://doi.org/10.1007/s10762-018-0501-7
  12. Strength and microstructure of CO2 cured low-calcium clinker vol.188, pp.None, 2018, https://doi.org/10.1016/j.conbuildmat.2018.08.134
  13. Towards chemical imaging: Fourier transform infrared mapping on organo-mineral materials vol.22, pp.12, 2013, https://doi.org/10.1080/19648189.2017.1304278
  14. Compositional Analysis of Cement Raw Meal by Near-Infrared (NIR) Spectroscopy vol.52, pp.18, 2013, https://doi.org/10.1080/00032719.2019.1628248
  15. Self-healing, re-adhering, and carbon-steel corrosion mitigating properties of fly ash-containing calcium aluminum phosphate cement composite at 300 °C hydrothermal temperature vol.99, pp.None, 2019, https://doi.org/10.1016/j.cemconcomp.2019.02.011
  16. An investigation into the properties of ternary and binary cement pastes containing glass powder vol.13, pp.3, 2013, https://doi.org/10.1007/s11709-018-0511-5
  17. Transformation of Construction Cement to a Self-Healing Hybrid Binder vol.20, pp.12, 2013, https://doi.org/10.3390/ijms20122948
  18. Elucidation of Calcite Structure of Calcium Carbonate Formation Based on Hydrated Cement Mixed with Graphene Oxide and Reduced Graphene Oxide vol.4, pp.6, 2019, https://doi.org/10.1021/acsomega.9b00042
  19. Changes in mineral composition, growth of calcite crystal, and promotion of physico-chemical properties induced by carbonation of β-C2S vol.34, pp.None, 2013, https://doi.org/10.1016/j.jcou.2019.06.005
  20. Optimization of mechanical, thermal, and ignition properties of polyester fabric using urea and phosphoric acid vol.49, pp.6, 2013, https://doi.org/10.1177/1528083718798636
  21. Long-term thaumasite sulfate attack on Portland-limestone cement concrete: A multi-technique analytical approach for assessing phase assemblage vol.130, pp.None, 2013, https://doi.org/10.1016/j.cemconres.2020.105995
  22. Inside black pearls vol.163, pp.None, 2020, https://doi.org/10.1016/j.matchar.2020.110276
  23. Study of the in-situ growth of carbon nanofibers on cement clinker vol.7, pp.5, 2013, https://doi.org/10.1088/2053-1591/ab8f47
  24. Comparison of embryonic and adult shells of Sepia officinalis (Cephalopoda, Mollusca) vol.139, pp.2, 2020, https://doi.org/10.1007/s00435-020-00477-2
  25. Calcination process and kinetic carbonation effect on the hydrated and anhydrate phases of the OPC matrix at early age of hydration vol.17, pp.1, 2013, https://doi.org/10.1080/16874048.2021.1944735
  26. Assessment of Mineral Trioxide Aggregate Setting in Simulated Root Canal with Different Root Canal Wall Thickness: In Vitro Study vol.11, pp.4, 2021, https://doi.org/10.3390/app11041727
  27. Mechanical Activation of Construction and Demolition Waste in Order to Improve Its Pozzolanic Reactivity vol.9, pp.9, 2021, https://doi.org/10.1021/acssuschemeng.0c05838
  28. Fly ash as a raw material for low-carbon cement clinkers and its radiological properties vol.328, pp.3, 2013, https://doi.org/10.1007/s10967-021-07719-7
  29. Structure and Composition of the Eggshell of a Passerine Bird, Setophaga ruticilla (Linnaeus, 1758) vol.27, pp.3, 2013, https://doi.org/10.1017/s1431927621000301
  30. Hydration of sustainable ternary cements containing phosphogypsum vol.28, pp.None, 2013, https://doi.org/10.1016/j.susmat.2021.e00280
  31. Effect of alkalis on products of enforced carbonation of cement paste vol.291, pp.None, 2013, https://doi.org/10.1016/j.conbuildmat.2021.123203
  32. The Utilisation of Solid Fuels Derived from Waste Pistachio Shells in Direct Carbon Solid Oxide Fuel Cells vol.14, pp.22, 2021, https://doi.org/10.3390/ma14226755
  33. Phase evolution, micromechanical properties, and morphology of calcium (alumino)silicate hydrates C-(A-)S-H under carbonation vol.152, pp.None, 2022, https://doi.org/10.1016/j.cemconres.2021.106683