Browse > Article
http://dx.doi.org/10.1007/s40069-013-0039-y

Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy  

Ylmen, Rikard (Department of Chemistry and Biotechnology, Environmental Inorganic Chemistry, Chalmers University of Technology)
Jaglid, Ulf (Department of Chemistry and Biotechnology, Environmental Inorganic Chemistry, Chalmers University of Technology)
Publication Information
International Journal of Concrete Structures and Materials / v.7, no.2, 2013 , pp. 119-125 More about this Journal
Abstract
Carbonation is a natural ageing process for cement. This study focuses on how the carbonation rate varies with selected hydration times and atmospheric conditions during the early stages of reacting dried cement paste. Diffuse reflection Fourier transform infrared spectroscopy is shown to be a suitable technique to monitor the formation of carbonates in cement. Combined with a previously developed freeze drying technique, carbonation can be studied at specific hydration stages. In ambient air both calcium hydroxide and calcium silicate hydrate (C-S-H) in cement are carbonated. Increased hydration time enhances the carbon dioxide uptake, which indicates that the calcium in the hydration products reacts more easily than the calcium in the clinker phase. In a humid $CO_2$ atmosphere, the carbonation process is so pronounced that it decomposes C-S-H into calcium carbonate and silica. In a moist $N_2$ atmosphere no carbonation occurs, but the sulfate chemistry of the cement seems to be affected due to the formation of ettringite.
Keywords
carbonation; Portland cement; infrared spectroscopy; cement hydration; C-S-H;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Andersen, F. A., & Ljerka Brecevic, L. (1991). Infrared spectra of amorphous and crystalline calcium carbonate. Act Chemica Scandinavica, 45, 1018-1024.   DOI
2 Bjornstrom, J. (2005). Influence of nano-silica and organic admixtures on cement hydration: A mechanistic investigation. PhD thesis, Department of Chemistry, Goteborg University, Gothenburg, Sweden.
3 Clarkson, J. R., Price, T. J., & Adams, C. J. (1992). Role of metastable phases in the spontaneous precipitation of calcium carbonate. Journal of the Chemical Society, Faraday Transactions, 88(2), 243-249.
4 Coleyshaw, E. E., Crump, G., & Griffith, W. P. (2003). Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite. Spectrochimica Acta Part A, 59, 2231-2239.   DOI   ScienceOn
5 Delgado, A. H., Paroli, R. M., & Beaudoin, J. J. (1996). Comparison of IR techniques for the characterization of construction cement minerals and hydrated products. Applied Spectroscopy, 50(8), 970-976.   DOI   ScienceOn
6 Frech, R., Wang, E. C., & Bates, J. B. (1980). The I.R. and Raman spectra of CaCO3 (aragonite). Spectrochimica Acta, 36A, 915-919.
7 Griffiths, P. R., de Haseth, J. A., & Fourier, (2007). Transform infrared spectrometry (2nd ed., p. 349). Hoboken, NJ:Wiley.
8 Grounds, T., Midgley, H. G., & Nowell, D. V. (1988). Carbonation of ettringite by atmospheric carbon dioxide. Thermochimica Acta, 135, 347-352.   DOI   ScienceOn
9 Gunasekaran, S., Anbalagan, G., & Pandi, S. (2006). Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy, 37, 892-899.   DOI   ScienceOn
10 Houst, Y. F. (1996). The role of moisture in the carbonation of cementitious materials. Internationale Zeitschrift fur Bauinstandsetzen, 1, 49-66.
11 Lam, R. S. K., Charnock, J. M., Lennie, A., & Meldrum, F. C. (2007). Synthesis-dependant structural variations in amorphou calcium carbonate. CrystEngComm, 9, 1226-1236.   DOI   ScienceOn
12 Mejlhede Jensen, O., Freiesleben Hansen, P., Lachowski, E. E., & Glasser, F. P. (1999). Clinker mineral hydration at reduced relative humidities. Cement and Concrete Research, 29, 1505-1512.   DOI   ScienceOn
13 Mollah, M. Y. A., Kesmez, M., & Cocke, D. L. (2003). An X-ray diffraction (XRD) and Fourier transform infrared spectroscopic (FT-IR) investigation of the long-term effect on the solidification/stabilization (S/S) of arsenic(V) in Portland cement type-V. Science of the Total Environment, 325, 255-262.
14 Pajares, I., Martinez-Ramirez, S., & Blanco-Varela, M. T. (2003). Evolution of ettringite in presence of carbonate, and silicate ions. Cement & Concrete Composites, 25, 861-865.   DOI   ScienceOn
15 Richard, T., Mercury, L., Poulet, F., & d'Hendecourt, L. (2006). Diffuse reflectance infrared Fourier transform spectroscopy as a tool to characterise water in adsorption/confinement situations. Journal of Colloid and Interface Science, 304, 125-136.   DOI   ScienceOn
16 Rutt, H. N., & Nicola, J. H. (1974). Raman spectra of carbonates of calcite structure. Journal of Physics C Solid State Physics, 7, 4522-4528.   DOI   ScienceOn
17 Shivkumara, C., Singh, P., Gupta, A., & Hegde, M. S. (2006). Synthesis of vaterite $CaCO_3$ by direct precipitation using glycine and L-alanine as directing agents. Materials Research Bulletin, 41, 1455-1460.   DOI   ScienceOn
18 Vazquez-Moreno, T., & Blanco-Varela, M. T. (1981). Table of infrared frequencies and absorption spectra of compound related to cement chemistry. Materiales de Construccion, 182, 31-48.
19 Trezza, M. A., & Lavat, A. E. (2001). Analysis of the system 3CaO.$Al_2O_3$-$CaSO_4$.$2H_2O$-$CaCO_3$-$H_2O$ by FT-IR spectroscopy. Cement and Concrete Research, 31, 869-872.   DOI   ScienceOn
20 Vagenas, N. V., Gatsouli, A., & Kontoyannis, C. G. (2003). Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta, 59, 831-836.   DOI   ScienceOn
21 Xiantuo, C., & Ruizhen, Z. (1994). Kinetic study of ettringite carbonation reaction. Cement and Concrete Research, 24, 1383-1389.   DOI   ScienceOn
22 Xyla, A. G., & Koutsoukos, P. G. (1989). Quantitative analysis of calcium carbonate polymorphs by infrared spectroscopy. Journal of the Chemical Society, Faraday Transactions, 185(10), 3165-3172.
23 Ylmen, R., Jaglid, U., Steenari, B.-M., & Panas, I. (2009). Early hydration and setting of Portland cement monitored by IR, SEM and Vicat Techniques. Cement and Concrete Research, 39, 433-439.   DOI   ScienceOn
24 Ylmen, R., Larsson, K., Jaglid, U., Panas, I., & Steenari, B.-M. (2008). DR-FTIR method for the study of early hydration of cement. In Conference Proceedings for 'SCC 2008:Challenges and Barriers to Application, Chicago, IL, November 10-12.
25 Yu, P., Kirkpatrick, R. J., Poe, B., McMillan, P. F., & Cong, X. (1999). Structure of calcium silicate hydrate (C-S-H):near-, mid-, and far-infrared spectroscopy. Journal of American Ceramic Society, 82(3), 742-748.