DOI QR코드

DOI QR Code

Fluorescence Micropatterning Based on the Polymeric Photobase Generator Containing Oxime-Urethane Groups by Dansylation

  • Choi, Won San (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Hak Soo (Department of Polymer Engineering, Chonnam National University) ;
  • Chae, Kyu Ho (Department of Polymer Engineering, Chonnam National University)
  • Received : 2013.03.21
  • Accepted : 2013.04.20
  • Published : 2013.03.01

Abstract

A polymeric photobase generator containing oxime-urethane groups is applied to a fluorescence micropatterning material. Polymer bearing oxime-urethane groups was prepared by copolymerization of methyl methacrylate with methacryloyloxyethyl benzophenoneoxime urethane (MBU). The reaction of amino groups in the irradiated copolymer film with dansyl chloride (Dns-Cl) was monitored by using UV absorption, IR absorption and fluorescence spectroscopy. The fluorescence spectrum of the Dns-Cl-treated irradiated copolymer film shows a strong fluorescence with a fluorescence maximum wavelength at 510 nm. A blue fluorescent micropattern with a line width of $2{\sim}3{\mu}m$ was obtained. Treatment of the irradiated copolymer film with Dns-Cl and rhodamine B mixture led to the formation of green, red, and orange-colored fluorescence micropatterns. Thus, various colored micropatterns on a single polymer film can be obtained by selective excitation of each dye molecules.

Keywords

References

  1. Campo, A.; Boos, D.; Spiess, H. W. Angew. Chem. Int. Ed. 2005, 44, 4707-4712 . https://doi.org/10.1002/anie.200500092
  2. Zhang, X.; Zhang, J.; Ren, Z.; Zhang, X.; Tian, T.; Wang, Y.; Dong, F.; Yang, B. Nanoscale 2010, 2, 277-281. https://doi.org/10.1039/b9nr00055k
  3. Zhang, C.; Vekselman, A. M.; Darling, D. Chem. Mater. 1995, 7, 850-855. https://doi.org/10.1021/cm00053a006
  4. Kim, J. M. Macromol. Rapid Commun., 2007, 28, 1191-1212. https://doi.org/10.1002/marc.200700043
  5. Park, S.; Kim, S.; Seo, J; Park, S. Y. Macromolecules, 2005, 38, 4557-4559. https://doi.org/10.1021/ma050009r
  6. Yoo, J. H.; Kim, S. -Y.; Cho, I.; Kim, J. -M.; Ahn, K. -D.; Lee, J. H. Polymer 2004, 45, 5391-5395. https://doi.org/10.1016/j.polymer.2004.05.073
  7. Kim, S; Park, S. Y. Adv. Mater. 2003, 15, 1341-1344. https://doi.org/10.1002/adma.200305050
  8. Kim, J. M.; Chang, T. -E.; Kang, J. -H.; Han, D. K.; Ahn, K. -D. Adv. Mater. 1999, 11, 1499-1502. https://doi.org/10.1002/(SICI)1521-4095(199912)11:18<1499::AID-ADMA1499>3.0.CO;2-D
  9. Gao, L.; Lu, N.; Hao, J.; Hu, W.; Shi, G.; Wang, Y.; Chi, L.; Langmuir 2009, 25, 3894-3897. https://doi.org/10.1021/la804145p
  10. Kocher, C.; Montali, A.; Smith, P.; Weder, C. Adv. Func. Mater. 2001, 11, 31-35. https://doi.org/10.1002/1616-3028(200102)11:1<31::AID-ADFM31>3.0.CO;2-U
  11. Takahashi, K.; Takahashi, Y.; Yagai, S.; Kitamura, A.; Karatsu, T. J. Photopol. Sci. Tech. 2010, 23, 789-794. https://doi.org/10.2494/photopolymer.23.789
  12. Zhao, L.; Vaupel, M.; Loy, D. A.; Shea, K. J. Chem. Mater. 2008, 20, 1870-1876. https://doi.org/10.1021/cm702804r
  13. Chae, K. H. Macromol. Rapid Commun. 1998, 19, 1-4. https://doi.org/10.1002/(SICI)1521-3927(19980101)19:1<1::AID-MARC1>3.0.CO;2-6
  14. Chae, K. H.; Gwark, J. C.; Chang, T. Macromol. Rapid Commun. 2000, 21, 1007-1012. https://doi.org/10.1002/1521-3927(20001001)21:15<1007::AID-MARC1007>3.0.CO;2-#
  15. Chae, K. H.; Jang, H. J. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 1200-1207. https://doi.org/10.1002/pola.10200
  16. Choi, W. S.; Noh, Y. -Y.; Chae, K. H. Adv. Mater. 2005, 17, 833-837. https://doi.org/10.1002/adma.200400841
  17. Chae, K. H.; Kim, Y. H. Adv. Func. Mater. 2007, 17, 3470-3476. https://doi.org/10.1002/adfm.200700240
  18. Chae, K. H.; Baek, S. J. Macromol. Chem. Phys. 2012, 213, 1190-1195. https://doi.org/10.1002/macp.201200207