DOI QR코드

DOI QR Code

Mobilization of Photosystem II-Light Harvesting Complex II Supercomplexes during High Light Illumination and State Transitions

  • Nath, Krishna (Department of Molecular Biology, Pusan National University) ;
  • Elizabeth, John (Department of Molecular Biology, Pusan National University) ;
  • Poudyal, Roshan Sharma (Department of Molecular Biology, Pusan National University) ;
  • Ko, Su Yeon (Department of Molecular Biology, Pusan National University) ;
  • Lim, Woon Ki (Department of Molecular Biology, Pusan National University) ;
  • Lee, Choon-Hwan (Department of Molecular Biology, Pusan National University)
  • Received : 2013.04.21
  • Accepted : 2013.05.21
  • Published : 2013.03.01

Abstract

The photosystem II (PSII) light harvesting complex (LHC) consists of a variety of pigment protein complexes which are involved in structural organization and regulation of photosynthetic unit. These LHC proteins encoded by a group of Lhcb genes are essential for the structural integrity of PSII supercomplex, the channeling the excitation energy to the reaction center of PSII and its redistribution to photosystem I by state transitions. Numerous studies with the help of recent technological advancements have enabled a significant progress in our understanding on the structure of PSII-LHCII supercomplexes and their mobilization under various light conditions. Here, we present a mini-review on the latest concepts and models depicting the structure of PSII-LHCII supercomplexes and the role of Lhcb proteins in their supra-molecular organization. Also we will review on the current understandings and remaining problems involved in the mobilization of the supercomplexes during state transitions and during high light illumination for controlling light energy distribution between the two photosystems.

Keywords

References

  1. Caffarri, S.; Kouril, R.; Kereiche, S.; Boekema, E. J.; Croce, R. EMBO J. 2009, 28, 3052‐3063. https://doi.org/10.1038/emboj.2009.232
  2. Kargul, J.; Turkina, M. V.; Nield, J.; Benson, S.; Vener, A. V.; Barber, J. FEBS J. 2005, 272, 4797-4806. https://doi.org/10.1111/j.1742-4658.2005.04894.x
  3. Galka, P.; Santabarbara, S.; Khuong, T. T. H.; Degand, H.; Morsomme, P.; Jennings, R. C.; Boekema, E. J.; Caffarri, S. Plant Cell 2012, 24, 2963-2978. https://doi.org/10.1105/tpc.112.100339
  4. Depege, N.; Bellafiore, S.; Rochaix, J. D. Science 2003, 299, 1572-1575. https://doi.org/10.1126/science.1081397
  5. Pesaresi, P.; Hertle, A.; Pribil, M.; Kleine, T.; Wagner, R.; Strissel, H.; Ihnatowicz, A.; Bonardi, V.; Scharfenberg, M.; Schneider, A. Plant Cell 2009, 21, 2402-2423. https://doi.org/10.1105/tpc.108.064964
  6. Jansson, S. Bioenergetics 1994, 1184, 1-19. https://doi.org/10.1016/0005-2728(94)90148-1
  7. Boekema, E. J.; van Roon, H,; Calkoen, F.; Bassi, R.; Dekker, J. P. Biochemistry 1999, 38, 2233-2239. https://doi.org/10.1021/bi9827161
  8. de Bianchi, S.; Betterle, N.; Kouril, R.; Cazzaniga, S.; Boekema, E.; Bassi, R.; Dell'Osto, L. Plant Cell 2011, 23, 2659-2679. https://doi.org/10.1105/tpc.111.087320
  9. Yakushevska, A. E.; Keegstra, W.; Boekema, E. J.; Dekker, J. P.; Andersson, J.; Jansson, S.; Ruban, A. V.; Horton, P. Biochemistry 2003, 42, 608-613. https://doi.org/10.1021/bi027109z
  10. Andersson, J.; Walters, R. G.; Horton, P.; Jansson, S. Plant Cell 2001, 13, 1193-1204. https://doi.org/10.1105/tpc.13.5.1193
  11. Mioslavina, Y.; de Bianchi, S.; Dell'Osto, L.; Bassi, R.; Holzwarth, A. R. J. Biol. Chem.2011, 286, 36830-36840. https://doi.org/10.1074/jbc.M111.273227
  12. Kouril, R.; Dekker, J. P.; Boekema, E. J. Biochim. Biophys. Acta 2012, 1817, 2-12. https://doi.org/10.1016/j.bbabio.2011.05.024
  13. Buchel, C.; Kuhlbrandt, W. Photosynth. Res. 2005, 85, 3-13. https://doi.org/10.1007/s11120-004-3195-8
  14. Croce, R.; van Amerongen, H. J. Photochem. Photobiol. B: Biol. 2011, 104, 143-153.
  15. Caffarri, S.; Broess, K.; Croce, R.; van Amerongen, H. Biophys. J. 2011, 100, 2094-2103. https://doi.org/10.1016/j.bpj.2011.03.049
  16. Damkjær, J. T., Kereiche, S.; Johnson, M. P.; Kovacs, L.; Kiss, A. Z.; Boekema, E. J.; Ruban, A. V.; Horton, P.; Jansson, S. Plant Cell 2009, 21, 3245-3256. https://doi.org/10.1105/tpc.108.064006
  17. Kouril, R.; Zygadlo, A.; Arteni, A. A.; de Wit, C. D.; Dekker, J. P.; Jensen, P. E.; Scheller, H. V.; Boekema, E. J. Biochem. 2005, 44, 10935-10940. https://doi.org/10.1021/bi051097a
  18. Tokutsu, R.; Iwai, M.; Minagawa, J. J. Biol. Chem. 2009, 284, 7777-7782. https://doi.org/10.1074/jbc.M809360200
  19. Allen, J. F. Biochim. Biophys. Acta 1992, 1098, 275-335. https://doi.org/10.1016/S0005-2728(09)91014-3
  20. Minagawa, J. Biochim. Biophys. Acta 2011, 1807, 897-905. https://doi.org/10.1016/j.bbabio.2010.11.005
  21. Kargul, J.; Barber, J. FEBS J. 2008, 275, 1056-1068. https://doi.org/10.1111/j.1742-4658.2008.06262.x
  22. Minagawa, J. Biochim Biophys. Acta 2011, 1807, 897-905. https://doi.org/10.1016/j.bbabio.2010.11.005
  23. Dietzel, L.; Brautigam, K.; Steiner, S.; Schuffler, K.; Lepetit, B.; Grimm, B.; Schttler, M. A.; Pfannschmidt, T. Plant Cell 2011, 23, 2964-2977. https://doi.org/10.1105/tpc.111.087049
  24. Garcia-Cerdan,; J. G.; Kovacs, L.; Toth, T.; Kereiche, S.; Aseeva, E.; Boekema, E. J.; Mamedov, F.; Funk, C.; Schroder, W. P. Plant J. 2011, 65, 368-381. https://doi.org/10.1111/j.1365-313X.2010.04429.x
  25. Tikkanen, M.; Nurmi, M.; Kangasjarvi, S; Aro, E.-M. Biochim. Biophys. Acta 2008, 1777, 1432-1437. https://doi.org/10.1016/j.bbabio.2008.08.004
  26. Fristedt, R.; Vener, A.V. PLoS ONE, 2011, 6(9): e24565. doi:10.1371/journal.pone.0024565.
  27. Kereiche, S.; Kiss, A. Z.; Kouril, R.; Boekema, E. J.; Horton, P. FEBS Lett. 2010, 584, 759-764. https://doi.org/10.1016/j.febslet.2009.12.031
  28. Tikkanen, M.; Piippo, M.; Suorsa, M.; Sirpio, S.; Mulo P.; Vainonen J.; Vener, A. V.; AllahverdiyevaY.; Aro E.-M. Plant Mol. Biol. 2006, 62, 779-793. https://doi.org/10.1007/s11103-006-9044-8
  29. Jensen, P. E.; Gilpin, M.; Knoetzel, J.; Scheller, B. J. Biol. Chem. 2000, 275, 24701-24708. https://doi.org/10.1074/jbc.M000550200
  30. Lunde, C.; Jensen, P. E.; Haldrup, A.; Knoetzel, J.; Scheller, H. V. Nature. 2000, 408, 613-615. https://doi.org/10.1038/35046121
  31. Fristedt, R.; Granath, P.; Vener, A. V. PLoS ONE 2010, 5(6):e10963. doi:10.1371/journal.pone.0010963.
  32. Wientjes, E.; Amerongen, H. V.; Croce, R. Biochim. Biophys. Acta 2013, 1827, 420-426. https://doi.org/10.1016/j.bbabio.2012.12.009
  33. Chen, Y.-E.; Zhao, Z.-Y.; Zhang, H.-Y.; Zeng, X.-Y.; Yuan S. J. Exp. Bot. 2013, 64, 1167-1178.
  34. Hwang, H.-J.; Xu, C. C.; Moon, B.-Y.; Lee, C.-H. J. Plant Biol. 2003, 46, 122-129. https://doi.org/10.1007/BF03030441

Cited by

  1. Loss-of-function of OsSTN8 suppresses the photosystem II core protein phosphorylation and interferes with the photosystem II repair mechanism in rice (Oryza sativa) vol.76, pp.4, 2013, https://doi.org/10.1111/tpj.12331
  2. Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies vol.126, pp.2-3, 2015, https://doi.org/10.1007/s11120-015-0139-4