References
- Caffarri, S.; Kouril, R.; Kereiche, S.; Boekema, E. J.; Croce, R. EMBO J. 2009, 28, 3052‐3063. https://doi.org/10.1038/emboj.2009.232
- Kargul, J.; Turkina, M. V.; Nield, J.; Benson, S.; Vener, A. V.; Barber, J. FEBS J. 2005, 272, 4797-4806. https://doi.org/10.1111/j.1742-4658.2005.04894.x
- Galka, P.; Santabarbara, S.; Khuong, T. T. H.; Degand, H.; Morsomme, P.; Jennings, R. C.; Boekema, E. J.; Caffarri, S. Plant Cell 2012, 24, 2963-2978. https://doi.org/10.1105/tpc.112.100339
- Depege, N.; Bellafiore, S.; Rochaix, J. D. Science 2003, 299, 1572-1575. https://doi.org/10.1126/science.1081397
- Pesaresi, P.; Hertle, A.; Pribil, M.; Kleine, T.; Wagner, R.; Strissel, H.; Ihnatowicz, A.; Bonardi, V.; Scharfenberg, M.; Schneider, A. Plant Cell 2009, 21, 2402-2423. https://doi.org/10.1105/tpc.108.064964
- Jansson, S. Bioenergetics 1994, 1184, 1-19. https://doi.org/10.1016/0005-2728(94)90148-1
- Boekema, E. J.; van Roon, H,; Calkoen, F.; Bassi, R.; Dekker, J. P. Biochemistry 1999, 38, 2233-2239. https://doi.org/10.1021/bi9827161
- de Bianchi, S.; Betterle, N.; Kouril, R.; Cazzaniga, S.; Boekema, E.; Bassi, R.; Dell'Osto, L. Plant Cell 2011, 23, 2659-2679. https://doi.org/10.1105/tpc.111.087320
- Yakushevska, A. E.; Keegstra, W.; Boekema, E. J.; Dekker, J. P.; Andersson, J.; Jansson, S.; Ruban, A. V.; Horton, P. Biochemistry 2003, 42, 608-613. https://doi.org/10.1021/bi027109z
- Andersson, J.; Walters, R. G.; Horton, P.; Jansson, S. Plant Cell 2001, 13, 1193-1204. https://doi.org/10.1105/tpc.13.5.1193
- Mioslavina, Y.; de Bianchi, S.; Dell'Osto, L.; Bassi, R.; Holzwarth, A. R. J. Biol. Chem.2011, 286, 36830-36840. https://doi.org/10.1074/jbc.M111.273227
- Kouril, R.; Dekker, J. P.; Boekema, E. J. Biochim. Biophys. Acta 2012, 1817, 2-12. https://doi.org/10.1016/j.bbabio.2011.05.024
- Buchel, C.; Kuhlbrandt, W. Photosynth. Res. 2005, 85, 3-13. https://doi.org/10.1007/s11120-004-3195-8
- Croce, R.; van Amerongen, H. J. Photochem. Photobiol. B: Biol. 2011, 104, 143-153.
- Caffarri, S.; Broess, K.; Croce, R.; van Amerongen, H. Biophys. J. 2011, 100, 2094-2103. https://doi.org/10.1016/j.bpj.2011.03.049
- Damkjær, J. T., Kereiche, S.; Johnson, M. P.; Kovacs, L.; Kiss, A. Z.; Boekema, E. J.; Ruban, A. V.; Horton, P.; Jansson, S. Plant Cell 2009, 21, 3245-3256. https://doi.org/10.1105/tpc.108.064006
- Kouril, R.; Zygadlo, A.; Arteni, A. A.; de Wit, C. D.; Dekker, J. P.; Jensen, P. E.; Scheller, H. V.; Boekema, E. J. Biochem. 2005, 44, 10935-10940. https://doi.org/10.1021/bi051097a
- Tokutsu, R.; Iwai, M.; Minagawa, J. J. Biol. Chem. 2009, 284, 7777-7782. https://doi.org/10.1074/jbc.M809360200
- Allen, J. F. Biochim. Biophys. Acta 1992, 1098, 275-335. https://doi.org/10.1016/S0005-2728(09)91014-3
- Minagawa, J. Biochim. Biophys. Acta 2011, 1807, 897-905. https://doi.org/10.1016/j.bbabio.2010.11.005
- Kargul, J.; Barber, J. FEBS J. 2008, 275, 1056-1068. https://doi.org/10.1111/j.1742-4658.2008.06262.x
- Minagawa, J. Biochim Biophys. Acta 2011, 1807, 897-905. https://doi.org/10.1016/j.bbabio.2010.11.005
- Dietzel, L.; Brautigam, K.; Steiner, S.; Schuffler, K.; Lepetit, B.; Grimm, B.; Schttler, M. A.; Pfannschmidt, T. Plant Cell 2011, 23, 2964-2977. https://doi.org/10.1105/tpc.111.087049
- Garcia-Cerdan,; J. G.; Kovacs, L.; Toth, T.; Kereiche, S.; Aseeva, E.; Boekema, E. J.; Mamedov, F.; Funk, C.; Schroder, W. P. Plant J. 2011, 65, 368-381. https://doi.org/10.1111/j.1365-313X.2010.04429.x
- Tikkanen, M.; Nurmi, M.; Kangasjarvi, S; Aro, E.-M. Biochim. Biophys. Acta 2008, 1777, 1432-1437. https://doi.org/10.1016/j.bbabio.2008.08.004
- Fristedt, R.; Vener, A.V. PLoS ONE, 2011, 6(9): e24565. doi:10.1371/journal.pone.0024565.
- Kereiche, S.; Kiss, A. Z.; Kouril, R.; Boekema, E. J.; Horton, P. FEBS Lett. 2010, 584, 759-764. https://doi.org/10.1016/j.febslet.2009.12.031
- Tikkanen, M.; Piippo, M.; Suorsa, M.; Sirpio, S.; Mulo P.; Vainonen J.; Vener, A. V.; AllahverdiyevaY.; Aro E.-M. Plant Mol. Biol. 2006, 62, 779-793. https://doi.org/10.1007/s11103-006-9044-8
- Jensen, P. E.; Gilpin, M.; Knoetzel, J.; Scheller, B. J. Biol. Chem. 2000, 275, 24701-24708. https://doi.org/10.1074/jbc.M000550200
- Lunde, C.; Jensen, P. E.; Haldrup, A.; Knoetzel, J.; Scheller, H. V. Nature. 2000, 408, 613-615. https://doi.org/10.1038/35046121
- Fristedt, R.; Granath, P.; Vener, A. V. PLoS ONE 2010, 5(6):e10963. doi:10.1371/journal.pone.0010963.
- Wientjes, E.; Amerongen, H. V.; Croce, R. Biochim. Biophys. Acta 2013, 1827, 420-426. https://doi.org/10.1016/j.bbabio.2012.12.009
- Chen, Y.-E.; Zhao, Z.-Y.; Zhang, H.-Y.; Zeng, X.-Y.; Yuan S. J. Exp. Bot. 2013, 64, 1167-1178.
- Hwang, H.-J.; Xu, C. C.; Moon, B.-Y.; Lee, C.-H. J. Plant Biol. 2003, 46, 122-129. https://doi.org/10.1007/BF03030441
Cited by
- Loss-of-function of OsSTN8 suppresses the photosystem II core protein phosphorylation and interferes with the photosystem II repair mechanism in rice (Oryza sativa) vol.76, pp.4, 2013, https://doi.org/10.1111/tpj.12331
- Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies vol.126, pp.2-3, 2015, https://doi.org/10.1007/s11120-015-0139-4