DOI QR코드

DOI QR Code

Vehicle Detection and Tracking using Billboard Sweep Stereo Matching Algorithm

빌보드 스윕 스테레오 시차정합 알고리즘을 이용한 차량 검출 및 추적

  • 박민우 (경북대학교 IT대학 컴퓨터학부) ;
  • 원광희 (경북대학교 IT대학 컴퓨터학부) ;
  • 정순기 (경북대학교 IT대학 컴퓨터학부)
  • Received : 2013.03.06
  • Accepted : 2013.04.26
  • Published : 2013.06.30

Abstract

In this paper, we propose a highly precise vehicle detection method with low false alarm using billboard sweep stereo matching and multi-stage hypothesis generation. First, we capture stereo images from cameras established in front of the vehicle and obtain the disparity map in which the regions of ground plane or background are removed using billboard sweep stereo matching algorithm. And then, we perform the vehicle detection and tracking on the labeled disparity map. The vehicle detection and tracking consists of three steps. In the learning step, the SVM(support vector machine) classifier is obtained using the features extracted from the gabor filter. The second step is the vehicle detection which performs the sobel edge detection in the image of the left camera and extracts candidates of the vehicle using edge image and billboard sweep stereo disparity map. The final step is the vehicle tracking using template matching in the next frame. Removal process of the tracking regions improves the system performance in the candidate region of the vehicle on the succeeding frames.

본 논문에서는 시차영상 생성과 레이블링(labeling)을 동시에 수행하는 빌보드 스윕 스테레오 시차정합 알고리즘을 적용하고, 두 단계로 구성된 복합 가설생성(hypothesis generation) 단계를 적용함으로서 거짓알림(false alarm)을 줄이고, 차량 검출의 정확도를 높이는 방법을 제안한다. 먼저 차량의 정면에 장착된 두 대의 카메라를 이용하여 영상을 획득하고, 이 영상을 사용하여 빌보드 스윕 스테레오 시차정합 알고리즘을 수행하여 지면과 배경이 제거된 장애물(obstacle)만이 존재하는 특수한 형태의 시차영상을 생성한다. 이렇게 생성된 지면과 배경이 제거된 레이블링된 시차영상을 이용하여 차량 검출 및 추적을 수행한다. 차량 검출 및 추적단계는 크게 세 단계로 나눠진다. 첫 번째 단계는 학습 단계로서 학습데이터로부터 Gabor필터를 사용해서 특징점을 추출하고, 추출된 특징점을 학습한 뒤 서포트 벡터머신 분류기를 생성하는 단계이다. 두 번째 단계는 스테레오 카메라의 영상 중 주 카메라의 영상으로부터 에지 정보를 추출하고, 지면과 배경이 제거된 시차 영상으로부터 얻어진 시차정보를 이용해서 차량이 존재하는 후보영역을 뽑은 뒤 서포트 벡터머신 분류기를 사용하여 차량을 검출하는 단계이다. 마지막 단계는 차량 추적단계로서 검출이 완료된 차량들은 다음 프레임에서 템플릿 매칭을 수행하여 추적한다. 이는 추적에 성공할 경우 다음 프레임의 차량 검출시 후보영역에서 배제함으로서 전체적인 차량 검출 성능을 향상시킨다.

Keywords

References

  1. Volvo invents BLIS, http://www.autoblog.com/2004/08/04/volvo-invents-blis-blind-spot-info-system-actual-happiness, 2004.
  2. Min Woo Park, Kyung Ho Jang, and Soon Ki Jung, "Panoramic Vision System to Eliminate Driver's Blind Spots using a Laser Sensor and Cameras," International Journal of Intelligent Transportation Systems Research, Vol. 10, Issue 3, pp. 101-114, 2012. https://doi.org/10.1007/s13177-012-0046-4
  3. Gideon P. Stein, Yoram Gdalyahu, and Amnon Shashua, "Stereo-Assist: Top-down Stereo for Driver Assistance Systems," Proc. Intelligent Vehicles Symposium(IV) , pp. 723-730, 2010.
  4. Seiya Shimizu, Jun Kawai, and Hiroshi Yamada, "Wraparound View System for Motor Vehicles," Fujitsu Scientific & Technical Journal, Vol. 46, No. 1, pp. 95-102, 2010.
  5. 최미순, 이정환, 석정희, 노태문, 심재창, "영상분할 및 Haar-like 특징기반 자동차 검출," 멀티미디어학회논문지, 제13권, 제9호, pp. 1314-1312. 2010.
  6. M. Okutomi and T. Kanade, "A Multiple-Baseline Stereo," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 4, pp. 353-363, 1993. https://doi.org/10.1109/34.206955
  7. Zehang Sun, George Bebis, and Ronald Miller, "On-Road Vehicle Detection: A Review," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 5, pp. 694-711, 2006. https://doi.org/10.1109/TPAMI.2006.104
  8. C.H. Lee, Y.C. Lim, S. Kwon and J.H. Lee, "Stereo Vision-Based Vehicle Detection using a Road Feature and Disparity Histogram," Optical Engineering, Vol. 50, Issue 2, pp. 027004-027004-23, 2011. https://doi.org/10.1117/1.3535590
  9. Zehang Sun, George Bebis, and Ronald Miller, "On-Road Vehicle Detection using Evolutionary Gabor Filter Optimization," IEEE Transactions on Intelligent Transportation Systems, Vol. 6, No. 2, pp. 125-137, 2005. https://doi.org/10.1109/TITS.2005.848363
  10. Zehang Sun, George Bebis, and Ronald Miller, "On-Road Vehicle Detection using Gabor Filters and Support Vector Machines," Proc. International Conference on Digital Signal Processing, pp. 200-203, 2002.
  11. Jaesik Choi, Realtime On-Road Vehicle Detection with Optical Flows and Haar-Like Feature Detectors, Computer Science Research and Tech Reports, University of Illinois at Urbana-Champaign, 2006.
  12. Gwang Yul Song, Ki Yong Lee, and Joon Woong Lee, "Vehicle Detection by Edge-based Candidate Generation and Appearance-based Classification," Proc. IEEE Symposium( IV) Intelligent Vehicle, pp. 428-433, 2008.
  13. Chung-Hee Lee, Young-Chul Lim, Soon Kwon, and Jonghwan Kim, "Stereo Vision-Based Obstacle Detection using Dense Disparity map," Proc. International Conference on Graphic and Image Processing, Vol. 8285, pp. 82853O-82853O-6, 2011.
  14. Z.H. Zhou and X. Geng, "Projection Functions for Eye Detection," Pattern Recognition, Vol. 37, Issue 5, pp. 1049-1056, 2004. https://doi.org/10.1016/j.patcog.2003.09.006
  15. M.W. Park and S.K. Jung, "Eyeball Detection using Projection Function and Color Similarity," Proc. The 8th International Conference on Multimedia Information Technology and Applications, pp. 31-34, 2012.
  16. Michael B. Dillencourt, Hannan Samet, and Markku Tamminen, "A General Approach to Connected-Component Labeling for Arbitrary Image Representations," Journal of the ACM, Vol. 39, Issue 2, pp. 253-280, 1992. https://doi.org/10.1145/128749.128750
  17. K.H. Won and S.K. Jung, "Billboard Sweep Stereo for Obstacle Detection in Road Scenes," Electronics Letters, Vol. 48, No. 24, pp. 1528-1530, 2012. https://doi.org/10.1049/el.2012.2353
  18. H. Hirschmuller, "Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information," Proc. IEEE Conf. on CVPR'05, pp. 807- 814, 2005.
  19. B. Froeba and A. Ernst, "Face Detection with the Modified Census Transform," Proc. IEEE Conf. on Automatic Face and Gesture Recognition, pp. 91-96, 2004.
  20. K.H. Won and S.K. Jung, "Parallel Implementation of Ground Plane Obstacle Detection," Proc. The 8th International Conference on Multimedia Information Technology and Applications, pp. 51-52, 2012.
  21. Corinna Cortes and Vladimir Vapnik, "Support-Vector Networks," Machine Learning, Vol. 20, Issue 3, pp. 273-297, 1995.
  22. SVM Light, http://svmlight.joachims.org, 2008.
  23. Gabor Filter, http://en.wikipedia.org/wiki/Gabor_filter, 2013.
  24. Gary Bradski and Adrian Kaehler, Learning OpenCV, O'Reilly, Sebastopol, Calif., 2008.
  25. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Prentice Hall, Upper Saddle River, New Jersey, 2008.
  26. Y.M. Fouda, "Template Matching based on SAD and Pyramid," International Journal of Computer Science and Information Security, Vol. 10, No. 4, pp. 11-16, 2012.
  27. M. Bayes and M. Price, "An Essay towards Solving a Problem in the Doctrine of Chances. by the Late Rev. Mr. Bayes, Communicated by Mr. Price, in a Letter to John Canton, M. A. and F. R. S.," Philosophical Transactions, Vol. 53, No. 1, pp. 370-418, 1763. https://doi.org/10.1098/rstl.1763.0053
  28. Receiver Operating Characteristic, http://en.wikipedia.org/wiki/Receiver_operating_charact eristic, 2013.

Cited by

  1. 커널 분해를 통한 고속 2-D 복합 Gabor 필터 vol.20, pp.8, 2013, https://doi.org/10.9717/kmms.2017.20.8.1157