Abstract
Bilateral filter (BF), functioning by two Gaussian filters, domain and range filter is a nonlinear filter for sharpness enhancement and noise removal. In infrared (IR) small target detection field, the BF is designed by background predictor for predicting background not including small target. For this, the standard deviations of the two Gaussian filters need to be changed adaptively in background and target region of an infrared image. In this paper, the proposed bilateral filter make the standard deviations changed adaptively, using variance feature of mean values of surrounding block neighboring local filter window. And, in case the variance of mean values for surrounding blocks is low for any processed pixel, the pixel is classified to flat background and target region for enhancing background prediction. On the other hand, any pixel with high variance for surrounding blocks is classified to edge region. Small target can be detected by subtracting predicted background from original image. In experimental results, we confirmed that the proposed bilateral filter has superior target detection rate, compared with existing methods.
도메인 필터 및 레인지 필터, 이들 두개의 가우시안 필터에 의해 동작하는 양방향 필터 (bilateral filter)는 원 영상의 선예도 상승 및 노이즈 감소 특성을 가지는 비선형 필터이다. 본 논문은 적외선 소형 표적 탐지에 있어서 양방향 필터을 표적이 없는 경우의 배경을 예측하는 배경 예측기로 설계하고자 한다. 이를 위하여 양방향 필터의 도메인 필터 및 레인지 필터의 표준 편차는 배경 영역과 표적 영역 사이에서 적응적으로 가변되어야 한다. 제안한 양방향 필터는 국부 창 주위 블록에 대하여 그 평균값들의 분산 특성을 이용하여 도메인 필터 및 레인지 필터의 표준 편차를 적응적으로 가변시킨다. 또한 처리되는 화소에 대하여 주위 블록 평균값들의 분산값이 작을 경우 평탄 배경 및 표적 영역으로 분류하고, 그 분산값이 클수록 에지 영역으로 분류하여 양방향 필터 처리함으로써 배경 예측의 정확도를 향상시켰다. 이러한 필터 구조의 양방향 필터는 표적이 없는 경우의 배경을 예측하여 표적을 포함하는 원 영상과 표적이 없는 경우의 예측 배경과의 차를 이용하여 소형 표적을 검출할 수 있다. 실험 결과에서 제안한 양방향 필터를 이용한 방법이 기존의 방법들보다 표적 검출률이 우수함을 확인하였다.