DOI QR코드

DOI QR Code

Influence of Plant Growth Regulator Application on Seed Germination of Dandelion (Taraxacum officinale)

식물생장조절물질 처리가 서양민들레 종자 발아에 미치는 영향

  • Kim, Yoon Ha (School of Applied Bioscience, Kyungpook National University) ;
  • Lee, In Jung (School of Applied Bioscience, Kyungpook National University)
  • 김윤하 (경북대학교 응용생명과학부) ;
  • 이인중 (경북대학교 응용생명과학부)
  • Received : 2013.03.22
  • Accepted : 2013.04.22
  • Published : 2013.06.30

Abstract

Dandelion (Taraxacum officinale) is a member of family Asteraceae that grows all over the Korea. Recently, dandelion was cultivated for medicinal crops because of its positive medicinal effects. However, dandelion is considered as a troublesome weed in grass lawns of golf course and orchards. This study was conducted to investigate the effect of plant growth regulators [gibberellins ($GA_3$); kinetin; salicylic acid (SA); ethephon)] with different concentration on seed germination control of dandelion. Seed germination rates were increased in all concentration of $GA_3$ and kinetin treatment compared to control. In the 0.5 mM of ethephon application, seed germination rate was more increased than that of control while seed germination rate was reduced in 1.0 and 1.5 mM of ethephon treatments. Seed germination rate was significantly decreased with different SA dilutions compared to control. The germination rate was more reduced when SA was applied in combination with $GA_3$ than only SA treatments.

서양민들레는 국화과 식물로서 한국 전역에서 자생하고 있다. 최근에는 서양민들레의 효능으로 인해 최근 약용식물로 재배되고 있다. 그러나 서양민들레는 골프장 잔디밭이나 과수원에서는 잡초로 고려되고 있다. 본 실험은 다른 농도의 식물생장조절물질[gibberellins ($GA_3$); kinetin; salicylic acid (SA); ethephon)] 처리가 서양민들레 종자발아율에 미치는 영향을 조사하기 위해 수행하였다. 실험결과, $GA_3$ 및 kinetin 처리 모든 농도에서 무처리에 비하여 종자발아율이 약 24.2~41.9% 높았다. Ethephon 0.5 mM의 처리에서는 무처리에 비해 종자발아율이 7.5% 높았으나, 1.0 및 1.5 mM 처리에서는 약 11~22% 가량 낮은 경향이었다. 반면에 SA와 $GA_3$의 혼합처리 경우에는 했을 때 종자발아율은 SA 단독처리보다 더욱 낮았다.

Keywords

References

  1. Abeles, F.B. 1986. Role of ethylene in Lactuca sativa cv 'Grand Rapid' seed germination. Plant Physiol. 81(3):780-787. https://doi.org/10.1104/pp.81.3.780
  2. Bewley, J.D. 1997. Seed germination and dormancy. The Plant Cell 9:1055-1066. https://doi.org/10.1105/tpc.9.7.1055
  3. Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R. and Weigel, D. 1998. Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. The Plant Cell 10:791-800. https://doi.org/10.1105/tpc.10.5.791
  4. Chon, S.U. and Park, J.S. 2012. Change in plant growth and physiologically-active compounds content of Taraxacum officinale under plastic house condition. Kor. J. Crop Sci. 57(4):449-455. (In Korean) https://doi.org/10.7740/kjcs.2012.57.4.449
  5. Edwards, M.E. and Miller, J.H. 1972. Growth regulation by ethylene in fern gametophytes, II inhibition of cell division. Amer. J. Bot. 59:450-457. https://doi.org/10.2307/2441525
  6. Groot, S.P.C. and Karssen, C.M. 1987. Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants. Planta 171: 525-531. https://doi.org/10.1007/BF00392302
  7. Gubler, F., Kalla, R., Roberts, J.K. and Jacobsen, J.V. 1995. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7:1879-1891.
  8. Im, D.Y. and Lee, K.I. 2011. Nitric oxide production inhibitory and scavenging activity and tyrosinase inhibitory activity of extracts from Taracacum officinale and Taraxacum coreanum. Kor. J. Med. Crop Sci. 19(5):362-367. (In Korean)
  9. Kim, Y.H., Hamayun, M., Khan, A.L., Na, C.I., Kang, S.M., et al. 2009. Exogenous application of plant growth regulators increased the total flavonoid content in Taraxacum officinale Wigg. Afr. J. Biotech. 8(21):5727-5732.
  10. Kim, Y.H., Khan, A.L., Hamayun, M., Kim, J.T., Lee, J.H., et al. 2010. Effects of prohexadione calcium on growth and gibberellins contents of Chrysanthemum morifolium R. cv Monalisa white. Sci. Hort. 123(3):423-427. https://doi.org/10.1016/j.scienta.2009.09.022
  11. Klessig, D.F. and Malamy, J. 1994. The salicylic acid signal in plants. Plant Mol. Biol. 26:1439-1458. https://doi.org/10.1007/BF00016484
  12. Klessig, D.F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., et al. 2000. Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA. 97:8849-8855. https://doi.org/10.1073/pnas.97.16.8849
  13. Lee, H.I., Leon, J. and Raskin, I. 1995. Biosynthesis and metabolism of salicylic acid. Proc. Natl. Acad. Sci. USA. 92:4076-7079. https://doi.org/10.1073/pnas.92.10.4076
  14. Lelievre, J.M., Latche, A., Jones, B., Bouzayen, M. and Pech, J.C. 2006. Ethylene and fruit ripening. Physiol. Plant. 101(4):727-739.
  15. MacMillan, J. 2002. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J. Plant Growth Regulat. 20:387-442.
  16. Miller, C.O. 1956. Similarity of some kinetin and red light effects. Plant Physiol. 31(4):318-3198. https://doi.org/10.1104/pp.31.4.318
  17. Olszewski, N., Sun, T.P. and Gubler, F. 2002. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61-S80. (Suppl.)
  18. Park, B.J. and Kim, S.C. 2004. Occurrence of weeds in turf according to fertilization level of $N:P_{2}O_{5}:K_{2}O$. J. Kor. Soc. People Plants Environ. 7(1):29-34. (In Korean)
  19. Park, M.S., Lim, D.O. and Kim, H.S. 2011. Distribution and management of naturalized plants in the Eastern area of Jeollanamdo, Korea. Kor. J. Plant Res. 24(5):489-498. (In Korean) https://doi.org/10.7732/kjpr.2011.24.5.489
  20. Park, N.I., Lee, I.Y., Park, J.E., Kim, H.J., Chun, J.C. et al. 2006. Control of annual bluegrass (Poa annua L.) by bispyribacsodium. Kor. Turfgrass Sci. 20(2):157-165. (In Korean)
  21. Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., et al. 2006. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol. 141:910-923. https://doi.org/10.1104/pp.106.082057
  22. Ribnicky, D.M., Shulaev, V. and Raskin, I. 1998. Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol. 118(2):565-572. https://doi.org/10.1104/pp.118.2.565
  23. Pharis, R.P. and King, R.W. 1985. Gibberellins and reproductive development in seed plants. Ann. Rev. Plant Physiol. 36:517-568. https://doi.org/10.1146/annurev.pp.36.060185.002505
  24. Sohn, E.Y., Kim, Y.H., Kim, B.S., Seo, D.H., Lee, H.S. et al. 2010. Change in endogenous gibberellin contents during bulb development period in the cold-type cultivar of garlic (Allium sativum L.) of Korea. Kor. J. Hort. Sci. Technol. 28(5):750-756. (In Korean)
  25. Whitehead, C.S. and Nelson, R.M. 1992. Ethylene sensitivity in germinating peanut seeds: the effect of short chain saturated fatty acids. J. Plant Physiol. 139:479-483. https://doi.org/10.1016/S0176-1617(11)80498-0
  26. Wilson, R.N., Hechman, J.W. and Somerville, C.R. 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100:403-408. https://doi.org/10.1104/pp.100.1.403
  27. Wittwer, S.H. and Dedolph, R.R. 1963. Some effects of kinetin on the growth and flowering of intact green plants. Amer. J. Bot. 50(4):330-336. https://doi.org/10.2307/2440149
  28. Xie, Z., Zhang, Z.L., Hanzlik, S., Cook, E. and Shen, Q.J. 2007. Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol. Biol. 64: 293-303. https://doi.org/10.1007/s11103-007-9152-0

Cited by

  1. Effect of Environmental Conditions and Chemical Treatments on Seed Germination of Astilbe koreana (Kom.) Nakai vol.29, pp.2, 2016, https://doi.org/10.7732/kjpr.2016.29.2.235
  2. Effect of Sorbitol and Salicylic Acid on Quality and Functional Food Contents of Tomato Fruit (Solanum lycopersicum) vol.32, pp.6, 2014, https://doi.org/10.7235/hort.2014.14018
  3. Physicochemical Properties and Growth Characteristics of Wood Chip and Peat Moss Based Vegetation Media vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.323
  4. Effects of Gibberellic Acid and Alternating Temperature on Breaking Seed Dormancy of Panax ginseng C. A. Meyer vol.24, pp.4, 2016, https://doi.org/10.7783/KJMCS.2016.24.4.284
  5. Effect of Application of Salicylic Acid on the Plant Growth and Fruit Quality in Strawberry vol.52, pp.5, 2018, https://doi.org/10.14397/jals.2018.52.5.11