DOI QR코드

DOI QR Code

온도 변화에 따른 합성 버네사이트 특성 변화 연구

Effects of Temperature on A Synthesized Birnessite

  • 박수오 (고려대학교 지구환경과학과) ;
  • 김영재 (고려대학교 지구환경과학과) ;
  • 이영재 (고려대학교 지구환경과학과)
  • Park, Soo Oh (Department of Earth & Environmental Sciences, Korea University) ;
  • Kim, Young Jae (Department of Earth & Environmental Sciences, Korea University) ;
  • Lee, Young Jae (Department of Earth & Environmental Sciences, Korea University)
  • 투고 : 2013.06.03
  • 심사 : 2013.06.24
  • 발행 : 2013.06.30

초록

버네사이트를 25, 40, 60과 $80^{\circ}C$ 각각에서 합성하였다. 이들 각 시료에 대해 X-선회절분석을 실시한 결과 합성 온도가 $25^{\circ}C$에서 $60^{\circ}C$까지 증가 시 X-선회절분석의 피크의 강도가 강해지는 반면 $80^{\circ}C$에서는 오히려 피크의 강도가 약해지는 것으로 나타났다. 이는 $60^{\circ}C$에서 합성된 버네사이트의 결정도가 상대적으로 가장 높다는 것을 의미한다. 그러나 60과 $80^{\circ}C$에서 합성된 버네사이트의 BET 비표면적은 39.4에서 89.7 $m^2/g$로 증가한다. SEM 분석 결과 $25^{\circ}C$에서 합성된 버네사이트의 경우 2~500 nm 크기의 구형으로 나타난 반면 합성 온도가 증가함에 따라 판상의 버네사이트가 관찰되었다. 뿐만 아니라, $80^{\circ}C$에서 합성된 버네사이트의 경우 $60^{\circ}C$에서 합성된 버네사이트와는 달리 판상의 결정에 많은 다공성을 띠고 있다. 따라서 $80^{\circ}C$에서 합성된 버네사이트의 BET 비표면적 증가는 합성된 버네사이트 결정 내 다공성증가에 의한 것으로 판단된다. 따라서 합성된 버네사이트의 결정성, 형성 등과 같은 다양한 이화학적 특성은 온도와 같은 영향인자에 의해 매우 민감하게 변화함을 보여주고 있다.

A series of birnessite was synthesized at 25, 40, 60, and $80^{\circ}C$, respectively. Intensities of XRD and the ratio of signal to noise of the peaks for samples increases with increasing temperature up to $60^{\circ}C$, whereas the intensity and ratio for a sample synthesized at $80^{\circ}C$ decrease, showing that crystallinity of the birnessite synthesized at $60^{\circ}C$ is better than that of the synthesized at $80^{\circ}C$. However, BET surface areas for these two samples show that the surface area increases 39.4 to 89.7 $m^2/g$ with increasing synthesizing temperature from 60 up to $80^{\circ}C$, indicating that a small surface area is shown in a well-crystallized birnessite rather than that of a poorly crystallized birnessite. SEM images show that morphologies for samples are seriously influenced by temperature. The morphology of the synthesized at 25 shows a round-shape, while a plate-like morphology is shown in the synthesized birnessite at $80^{\circ}C$. In addition, a porous layered structure is also shown in the synthesized birnessite at $80^{\circ}C$. These results suggest that physicochemical properties of the synthesized birnessite are sensitively affected by mechanical changes of parameters such as temperature during the synthesization.

키워드

참고문헌

  1. Burns, R.G. and Burns, V.M. (1977) The mineralogy and crystal chemistry of deep-sea manganese nodules, a polymetallic resource of the twenty-first century. Philosophical Transactions of the Royal Society of London (A), 286, 283-301. https://doi.org/10.1098/rsta.1977.0118
  2. Burns, V.M. and Burns, R.G. (1978) Post-depositional metal enrichment processes inside manganese nodules from the North Equatorial Pacific Ocean, Earth & Planetary Science Letters, 39, 341-348. https://doi.org/10.1016/0012-821X(78)90020-1
  3. Chorover, J. and Amistadi, M.K. (2001) Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces, Geochimica et Cosmochimica Acta, 65, 95-109. https://doi.org/10.1016/S0016-7037(00)00511-1
  4. Chunkhrov, F.K. and Gorshkov, A.I. (1981) Iron and manganese oxide minerals in soils, Transactions of the Rayal Society of Edinburgh: Earth Sciences, 72, 195-200. https://doi.org/10.1017/S0263593300009998
  5. Feng X.H., Zhai L.M., Tan, W.H., Liu, F., and He, J.Z. (2007) Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals, Environmental Pollution, 147, 366-373. https://doi.org/10.1016/j.envpol.2006.05.028
  6. Gaillot, A., Lanson, B., and Drits V.A. (2005) Structure of birnessite obtained from decomposition of permanagante under soft hydrothermal conditions. 1. Chemical and structural evolution as a function of temperature, Chemistry of Materials, 17, 2959-2975. https://doi.org/10.1021/cm0500152
  7. Glover, E.D. (1977) Characterization of a marine birnessite, American Mineralogist, 62, 278-285.
  8. Luo, J. and Suib, S.L. (1997) Proparative parameters, magnesium effects, and anion effects in the cyrstallinzation of birnessite, The Journal of Physical Chemistry, 101, 10403-10413. https://doi.org/10.1021/jp9720449
  9. Luo, J., Huang, A., Park, S.H., Suib, S.L., and O'Young C. (1998) Crystallization of sodium-birnessite and accompanied phase transformation, Chemistry of Materials, 10, 1561-1568. https://doi.org/10.1021/cm970745c
  10. Ma, Y., Luo, J., and Suib, S.L. (1999) Syntheses of birnessites using alcohols as reducing reagents: Effect of synthesis parameters on the formation of birnessite, Chemistry of Materials, 11, 1972-1979. https://doi.org/10.1021/cm980399e
  11. Manceau, A., Drits, V. A., Silvester, E. J., Bartoli, C., and Lanson, B. (1997) Structural mechanism of $Co^{2+}$ oxidation by the phyllomanganate buserite, American Mineralogist, 82, 1150-1175.
  12. Manceau, A., Lanson, B., Schlegel, M.L., Harge, J.C., Musso, M., Eybert-Berard, L., Hazemann, J.-L., Chateigner, D., and Lamble, G.M. (2000) Chemical forms of trace metals in soils by XAFS spectroscopy. I. Quantitative Zn speciation in smelter-contaminated soils, American Journal of Science, 300, 289-343. https://doi.org/10.2475/ajs.300.4.289
  13. McKenzie. R.M. (1971) The Synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese, Mineralogical Magazine, 38, 493-502. https://doi.org/10.1180/minmag.1971.038.296.12
  14. Silverster, E., Manceau, A., and Drits, V.A. (1997) Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnesskte: II. Results from chemical studies and EXAFS spectroscopy, American Mineralogist, 82, 962-978.
  15. Stumm, W. (1992) Chemistry of the solid-water interface and particle-water interface in natural systems, Wiley, New York., 428 p.
  16. Taylor, R.M., McKenzie, R.M., and Norrish, K. (1964) The mineralogy and chemistry of manganese in some Australian soils, Australian Journal of Soil Research, 2, 235-248. https://doi.org/10.1071/SR9640235
  17. Wang, M.C. and Huang, P.M. (1992) Significance of Mn(IV) oxide in the abiotic ring cleavage of pyrogallol in natural environments, Science of the Total Environment, 11, 147-157.