DOI QR코드

DOI QR Code

Molecular Authentication of Morus Folium Using Mitochondrial nad7 Intron 2 Region

  • Jin, Chi-Gyu (Department of Oriental Medicinal Materials and Processing, Kyung Hee University) ;
  • Kim, Min-Kyeung (Department of Oriental Medicinal Materials and Processing, Kyung Hee University) ;
  • Kim, Jin-Young (Department of Oriental Medicinal Materials and Processing, Kyung Hee University) ;
  • Sun, Myung-Suk (Department of Oriental Medicinal Materials and Processing, Kyung Hee University) ;
  • Kwon, Woo-Saeng (Department of Oriental Medicinal Materials and Processing, Kyung Hee University) ;
  • Yang, Deok-Chun (Department of Oriental Medicinal Materials and Processing, Kyung Hee University)
  • Received : 2013.06.05
  • Accepted : 2013.06.21
  • Published : 2013.06.30

Abstract

Morus Folium (Sang-yeop in Korean) is one of the most important Oriental medicinal plants. In Korea, both M. alba and M. cathayana are regarded as the botanical sources for Morus Folium. In order to discriminate M. alba and M. cathayana from their adulterant, M. tricuspidata, mitochondrial NADH dehydrogenase subunit 7 (nad7) intron 2 region was targeted for molecular analysis with universal primers. DNA polymorphisms, including SNP sites, insertions, and deletions, were detected among these three species sequencing data. Based on these DNA polymorphisms, specific primers were designed for the three species respectively. Multiplex PCR was conducted for molecular authentication of M. alba, M. cathayana, and M. tricuspidata with specific primers. The present results indicate that it is possible to identify Morus Folium from its adulterant using mitochondrial nad7 intron 2 region. The established multiplex-PCR system was proved to be effective for identification of Morus Folium. The results indicate that mitochondrial introns can be used for inter-specific polymorphic study, and the described method can be applied for molecular identification of medicinal materials.

Keywords

References

  1. Baldwin, B.G. 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol. Phylogen. 1:3-6. https://doi.org/10.1016/1055-7903(92)90030-K
  2. Chen, F.J., N. Nakashima, I. Komura, M. Kimura, N. Asano and S. Koya. 1995. Potentiation effects on pilocarpineinduced saliva secretion, by extracts and N-containing sugars derived from mulberry leaves. Biol. Pharm. Bull. 18:1676-1680. https://doi.org/10.1248/bpb.18.1676
  3. Cheung, K.S., H.S. Kwan, P.P. But and P.C. Shaw. 1994. Pharmacognostical identification of American and Oriental ginseng roots by genomic fingerprinting using arbitrarily primed polymerase chain reaction (AP-PCR). J. Ethnopharmacol. 42:67-69. https://doi.org/10.1016/0378-8741(94)90025-6
  4. Choi, Y.E., C.H. Ahn, B.B. Kim and E.S. Yoon. 2008. Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicus C. A. Meyer. Biol. Pharm. Bull. 31:135-138. https://doi.org/10.1248/bpb.31.135
  5. Cui, X.M., C.K. Lo, K.L. Yip, T.T.X. Dong and K.W.K. sim. 2003. Authentication of Panax notoginseng by 5S-rRNA Spacer Domain and Random Amplified Polymorphic DNA (RAPD) Analysis. Planta Med. 69:584-586. https://doi.org/10.1055/s-2003-40632
  6. Doi, K., T. Kojima, M. Makino, Y. Kimura and Y. Fujimoto. 2001. Studies on the constituents of the leaves of Morus alba L. Chem. Pharm. Bull. 49: 151-153. https://doi.org/10.1248/cpb.49.151
  7. Duminil, J., M.H. Pemonge and R.J. Petit. 2002. A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Molecular Ecology Notes 2:428-430. https://doi.org/10.1046/j.1471-8286.2002.00263.x
  8. Ha, W.Y., P.C. Shaw, J. Liu, F.C.F Yau and J. Wang. 2002. Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J. Agric. Food Chem. 50:1871-1875. https://doi.org/10.1021/jf011365l
  9. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analtsis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
  10. Hosseinzadeh, H. and A. Sadeghi. 1999. Antihyperglycemic effects of Morus nigra and Morus alba in mice. Pharm. Pharmacol. Lett. 9:63-65.
  11. Hu, D and Z. Luo. 2006. Polymorphisms of amplified mitochondrial DNA non-coding regions in Diospyros spp. Sci. Horticult. 109:275-281. https://doi.org/10.1016/j.scienta.2006.02.027
  12. Kim, S., J. Gao, W.C. Lee, K. Ryu, K. Lee and Y. Kim. 1999. Antioxidative flavonoids from the leaves of Morus alba. Archives of Pharmacal Research 22:81-85. https://doi.org/10.1007/BF02976442
  13. Luo, S.D., J. Nemec and B.M. Ning 1995. Anti-HIV flavonoids from Morus alba, Yunnan Zhiwu Yanjiu 17:89-95.
  14. Ngan, F., P. Shaw, P. But and J. Wang. 1999. Molecular authentication of Panax species. Phytochemistry 50:787-791. https://doi.org/10.1016/S0031-9422(98)00606-2
  15. Nomura, T and T. Fukai. 1980. Hypotensive constituent, kuwanon H, a new flavones derivative from the root bark of the cultivated mulberry tree (Morus alba L.). Heterocycles 14:1943-1951. https://doi.org/10.3987/R-1980-12-1943
  16. Nomura, T., T. Fukai and M. Katayanagi. 1978. Studies on the constituents of the cultivated mulberry tree. III. Isolatin of four new flavones, kuwanon A, B, C, and oxydihydromorusin from the root bark of Morus alba L. Chem. Pharm. Bull. 26:1453-1458. https://doi.org/10.1248/cpb.26.1453
  17. Park, C.h. 2007. The Genera of Vaschlar Plants of Korea, Flora of Korea Editorial Committed 247-249.
  18. Quandt, D., M. Stech. 2004. Molecular evolution of the trn-TUGC trnFGAA region in Bryophytes. Plant Biol. 6(5):545-554.
  19. Sasaki, Y., K. Komatsu and S. Nagumo. 2008. Rapid detection of Panax ginseng by loop-mediated isothermal amplification and its application to authentication of ginseng. Biol. Pharm. Bull. 31:1806-1808. https://doi.org/10.1248/bpb.31.1806
  20. Shaw, P.C and P.P.H. But. 1995. Authentication of Panax species and their adulterants by random-primed polymerase chain reaction. Planta Med. 61:466-469. https://doi.org/10.1055/s-2006-958138
  21. Shim, Y.H., J.H. Choi, C.D. Park, C.J. Lim, J.H. Cho and H.J. Kim. 2003. Molecular differentiation of Panax species by RAPD analysis. Archives of Pharmacal Research 26:601-605. https://doi.org/10.1007/BF02976708
  22. Wang, H., H. Sun, W.S. Kwon, H. Jin and D.C. Yang . 2009. Molecular identification of the Korean ginseng cultivar "Chunpoong" using the mitochondrial nad7 intron 4 region. Mitochondrial DNA 20:41-45. https://doi.org/10.1080/19401730902856738
  23. Wang, J., W.Y. Ha, F.N. Ngan, P.P.H. But and P.C. Shaw. 2001. Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants. Planta Med. 67:781-783. https://doi.org/10.1055/s-2001-18340
  24. Wolfe, K.H., W.H. Li and P.M. Sharp.1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. PNAS 84:9054-9058. https://doi.org/10.1073/pnas.84.24.9054
  25. Yip, T.T., C.N. Lau, P.P. But and Y.C. Kong. 1985. Quantitative analysis of ginsenosides in fresh Panax ginseng. Am. J. Chin. Med. 13:77-88. https://doi.org/10.1142/S0192415X85000125
  26. Zhu, S., H. Fushimi and K. Komatsu. 2008. Development of a DNA microarray for authentication of ginseng drugs based on 18S rRNA gene sequence. J. Agricult. Food Chem. 56:3953-3959. https://doi.org/10.1021/jf0732814
  27. Zhu, S., H. Fushimi. S. Cai and K. Komatsu. 2004. Species identification from ginseng drugs by multiplex amplification refractory mutation system (MARMS). Planta Med. 70:189-192. https://doi.org/10.1055/s-2004-815502

Cited by

  1. Molecular Authentication of Magnoliae Flos Using Robust SNP Marker Base on trnL-F and ndhF Region vol.28, pp.3, 2015, https://doi.org/10.7732/kjpr.2015.28.3.341
  2. Molecular Authentication of Acanthopanacis Cortex by Multiplex-PCR Analysis Tools vol.27, pp.6, 2014, https://doi.org/10.7732/kjpr.2014.27.6.680