Browse > Article
http://dx.doi.org/10.7732/kjpr.2013.26.3.397

Molecular Authentication of Morus Folium Using Mitochondrial nad7 Intron 2 Region  

Jin, Chi-Gyu (Department of Oriental Medicinal Materials and Processing, Kyung Hee University)
Kim, Min-Kyeung (Department of Oriental Medicinal Materials and Processing, Kyung Hee University)
Kim, Jin-Young (Department of Oriental Medicinal Materials and Processing, Kyung Hee University)
Sun, Myung-Suk (Department of Oriental Medicinal Materials and Processing, Kyung Hee University)
Kwon, Woo-Saeng (Department of Oriental Medicinal Materials and Processing, Kyung Hee University)
Yang, Deok-Chun (Department of Oriental Medicinal Materials and Processing, Kyung Hee University)
Publication Information
Korean Journal of Plant Resources / v.26, no.3, 2013 , pp. 397-402 More about this Journal
Abstract
Morus Folium (Sang-yeop in Korean) is one of the most important Oriental medicinal plants. In Korea, both M. alba and M. cathayana are regarded as the botanical sources for Morus Folium. In order to discriminate M. alba and M. cathayana from their adulterant, M. tricuspidata, mitochondrial NADH dehydrogenase subunit 7 (nad7) intron 2 region was targeted for molecular analysis with universal primers. DNA polymorphisms, including SNP sites, insertions, and deletions, were detected among these three species sequencing data. Based on these DNA polymorphisms, specific primers were designed for the three species respectively. Multiplex PCR was conducted for molecular authentication of M. alba, M. cathayana, and M. tricuspidata with specific primers. The present results indicate that it is possible to identify Morus Folium from its adulterant using mitochondrial nad7 intron 2 region. The established multiplex-PCR system was proved to be effective for identification of Morus Folium. The results indicate that mitochondrial introns can be used for inter-specific polymorphic study, and the described method can be applied for molecular identification of medicinal materials.
Keywords
Morus Folium; M. alba; M. cathayana; M. tricuspidata; nad7 intron; Polymorphism; Multiplex PCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baldwin, B.G. 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol. Phylogen. 1:3-6.   DOI   ScienceOn
2 Chen, F.J., N. Nakashima, I. Komura, M. Kimura, N. Asano and S. Koya. 1995. Potentiation effects on pilocarpineinduced saliva secretion, by extracts and N-containing sugars derived from mulberry leaves. Biol. Pharm. Bull. 18:1676-1680.   DOI   ScienceOn
3 Cheung, K.S., H.S. Kwan, P.P. But and P.C. Shaw. 1994. Pharmacognostical identification of American and Oriental ginseng roots by genomic fingerprinting using arbitrarily primed polymerase chain reaction (AP-PCR). J. Ethnopharmacol. 42:67-69.   DOI   ScienceOn
4 Choi, Y.E., C.H. Ahn, B.B. Kim and E.S. Yoon. 2008. Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicus C. A. Meyer. Biol. Pharm. Bull. 31:135-138.   DOI   ScienceOn
5 Cui, X.M., C.K. Lo, K.L. Yip, T.T.X. Dong and K.W.K. sim. 2003. Authentication of Panax notoginseng by 5S-rRNA Spacer Domain and Random Amplified Polymorphic DNA (RAPD) Analysis. Planta Med. 69:584-586.   DOI   ScienceOn
6 Doi, K., T. Kojima, M. Makino, Y. Kimura and Y. Fujimoto. 2001. Studies on the constituents of the leaves of Morus alba L. Chem. Pharm. Bull. 49: 151-153.   DOI   ScienceOn
7 Duminil, J., M.H. Pemonge and R.J. Petit. 2002. A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Molecular Ecology Notes 2:428-430.   DOI   ScienceOn
8 Ha, W.Y., P.C. Shaw, J. Liu, F.C.F Yau and J. Wang. 2002. Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J. Agric. Food Chem. 50:1871-1875.   DOI   ScienceOn
9 Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analtsis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
10 Hosseinzadeh, H. and A. Sadeghi. 1999. Antihyperglycemic effects of Morus nigra and Morus alba in mice. Pharm. Pharmacol. Lett. 9:63-65.
11 Hu, D and Z. Luo. 2006. Polymorphisms of amplified mitochondrial DNA non-coding regions in Diospyros spp. Sci. Horticult. 109:275-281.   DOI   ScienceOn
12 Kim, S., J. Gao, W.C. Lee, K. Ryu, K. Lee and Y. Kim. 1999. Antioxidative flavonoids from the leaves of Morus alba. Archives of Pharmacal Research 22:81-85.   과학기술학회마을   DOI   ScienceOn
13 Luo, S.D., J. Nemec and B.M. Ning 1995. Anti-HIV flavonoids from Morus alba, Yunnan Zhiwu Yanjiu 17:89-95.
14 Ngan, F., P. Shaw, P. But and J. Wang. 1999. Molecular authentication of Panax species. Phytochemistry 50:787-791.   DOI   ScienceOn
15 Nomura, T and T. Fukai. 1980. Hypotensive constituent, kuwanon H, a new flavones derivative from the root bark of the cultivated mulberry tree (Morus alba L.). Heterocycles 14:1943-1951.   DOI
16 Sasaki, Y., K. Komatsu and S. Nagumo. 2008. Rapid detection of Panax ginseng by loop-mediated isothermal amplification and its application to authentication of ginseng. Biol. Pharm. Bull. 31:1806-1808.   DOI   ScienceOn
17 Nomura, T., T. Fukai and M. Katayanagi. 1978. Studies on the constituents of the cultivated mulberry tree. III. Isolatin of four new flavones, kuwanon A, B, C, and oxydihydromorusin from the root bark of Morus alba L. Chem. Pharm. Bull. 26:1453-1458.   DOI
18 Park, C.h. 2007. The Genera of Vaschlar Plants of Korea, Flora of Korea Editorial Committed 247-249.
19 Quandt, D., M. Stech. 2004. Molecular evolution of the trn-TUGC trnFGAA region in Bryophytes. Plant Biol. 6(5):545-554.
20 Shaw, P.C and P.P.H. But. 1995. Authentication of Panax species and their adulterants by random-primed polymerase chain reaction. Planta Med. 61:466-469.   DOI   ScienceOn
21 Shim, Y.H., J.H. Choi, C.D. Park, C.J. Lim, J.H. Cho and H.J. Kim. 2003. Molecular differentiation of Panax species by RAPD analysis. Archives of Pharmacal Research 26:601-605.   DOI   ScienceOn
22 Wang, H., H. Sun, W.S. Kwon, H. Jin and D.C. Yang . 2009. Molecular identification of the Korean ginseng cultivar "Chunpoong" using the mitochondrial nad7 intron 4 region. Mitochondrial DNA 20:41-45.   DOI   ScienceOn
23 Wang, J., W.Y. Ha, F.N. Ngan, P.P.H. But and P.C. Shaw. 2001. Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants. Planta Med. 67:781-783.   DOI   ScienceOn
24 Wolfe, K.H., W.H. Li and P.M. Sharp.1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. PNAS 84:9054-9058.   DOI   ScienceOn
25 Yip, T.T., C.N. Lau, P.P. But and Y.C. Kong. 1985. Quantitative analysis of ginsenosides in fresh Panax ginseng. Am. J. Chin. Med. 13:77-88.   DOI   ScienceOn
26 Zhu, S., H. Fushimi. S. Cai and K. Komatsu. 2004. Species identification from ginseng drugs by multiplex amplification refractory mutation system (MARMS). Planta Med. 70:189-192.   DOI   ScienceOn
27 Zhu, S., H. Fushimi and K. Komatsu. 2008. Development of a DNA microarray for authentication of ginseng drugs based on 18S rRNA gene sequence. J. Agricult. Food Chem. 56:3953-3959.   DOI   ScienceOn