DOI QR코드

DOI QR Code

Comparative Antioxidant Enzyme Activity of Diploid and Tetraploid Platycodon grandiflorum by Different Drying Methods

  • Received : 2013.06.10
  • Accepted : 2013.06.18
  • Published : 2013.06.30

Abstract

The antioxidant enzyme and DPPH radical scavenging activity with variations in drying methods of diploid and tetraploid in Platycodon grandiflorum were determined. Antioxidant enzyme activities were measured as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and ascorbate peroxidase (APX). The roots of Platycodon grandiflorum were freeze-dried, indoor-dried, hot-air dried, and microwave dried. The root extract of P. grandiflorum have shown the highest SOD enzyme activity of 92% in tetraploid of freeze-dried and indoor-dried while diploid of microwave dried showed the lowest SOD enzyme activity of 47.5%. The activity of CAT showed higher values in the root of tetraploid than in the diploid of P. grandiflorum in all drying methods. The APX activity showed relatively higher values in the root extract of freeze-dried both the diploid and tetraploid, but the difference in comparison with other extracts was not significant. The POX activities according to drying methods of diploid and tetraploid in P. grandiflorum showed relatively high values in freeze-dried and indoor-dried compared with other drying methods, and the POX activity between the diploid and tetraploid was not significant difference in each drying method. The DPPH radical scavenging activity with variation in drying methods of diploid and tetraploid in P. grandiflorum was the highest in the freeze-dried, and was higher in tetraploid than diploid in all the concentrations. In conclusion, the root of P. grandiflorum had the potent biological activities in both diploid and tetraploid. In particular, the tetraploid root of P. grandiflorum showing high antioxidant enzyme activity could be good materials for development of source of functional healthy food.

Keywords

References

  1. Apel, K. and H. Hirt. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 5:373-99.
  2. Asada, K. 1994. Production and action of active oxygen species in photosynthetic tissues. In Foyer, C.H. and P.M. Mullineaux (eds.), Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, London, England. pp.77-105.
  3. Asish, K.P. and B.D. Anath. 2005. Salt tolerance and salinity effects on plants. A review Ecotoxicol. Environ. Saf. 60: 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  4. Bonnet, M., O. Camares and P. Veisseire. 2000. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J. Exp. Bot. 51(346):945-953. https://doi.org/10.1093/jexbot/51.346.945
  5. Boo, H.O., J.H. Shin, J.S. Shin, E.S. Choung, M.A. Bang, K.M. Choi and W.S. Song. 2012. Assessment on antioxidant potential and enzyme activity of some economic resource plants. Korean J. Plant Res. 25(3):349-356. https://doi.org/10.7732/kjpr.2012.25.3.349
  6. Brand-Williams, W., M.E. Cuvelier and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci. Tech. 28:25-30.
  7. Chen, G.X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30:987-998.
  8. Choi, J.H., Y.P. Hwang, H.S. Lee and H.G. Jeong. 2009. Inhibitory effect of Platycodi Radix on ovalbumin-induced airway inflammation in a murine model of asthma. Food Chem. Toxicol. 47:1272-1279. https://doi.org/10.1016/j.fct.2009.02.022
  9. Dionisio-Sese, M.L. and S. Tobita. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135:1-9. https://doi.org/10.1016/S0168-9452(98)00025-9
  10. Egley, G.H., R.N. Paul, K.C. Vaughn and S.O. Duke. 1983. Role of peroxidase in the development of water-impermeable seed coats in Sida spinos L. Planta 157:224-232. https://doi.org/10.1007/BF00405186
  11. Fu, X.J., H.B. Liu, P. Wang and H.S. Guan. 2009. A study on the antioxidant activity and tissues selective inhibition of lipid peroxidation by saponins from the roots of Platycodon grandiflorum. Am. J. Chin. Med. 37(5):967-975.
  12. Gao, S.L., D.N. Zhu, Z.H. Cai and D.R. Xu. 1996. Autotetraploid plants from colchicine-treated bud culture of Salvia miltior-rhiza Bge. Plant Cell Tiss. Org. Cult. 47( 1):73-77. https://doi.org/10.1007/BF02318968
  13. Gaspar, T., C. Penel, F.J. Castillo and H. Greppin. 1985. A two step control of basic and acid peroxidases and its significance for growth and development. Plant Physiol. 64:418-423. https://doi.org/10.1111/j.1399-3054.1985.tb03362.x
  14. Ishizaka, H. and J. Uematau. 1994. Amphidiploids between Cyclamen persicum Mill. and C. hederifolium Aiton induced through colchicine treatment of ovules in vitro and plants. Breed. Sci. 44:161-166.
  15. Jeong H.M., E.H. Han, Y.H. Jin, Y.P. Hwang, H.G. Kim, B.H. Park, J.Y. Kim, Y.C. Chung, K.Y. Lee and H.G. Jeong. 2010. Saponins from the roots of Platycodon grandiflorum stimulate osteoblast differentiation via p38 MAPK- and ERK- dependent RUNX2 activation. Food Chem. Toxicol. 48:3362-3368. https://doi.org/10.1016/j.fct.2010.09.005
  16. Kandpal, R.P., C.S. Vaidyanathan, M. Udaykumar, K.S. Krishnasastry and N. Appaji-Rao. 1981. Alternation in the activities of the enzyme of proline metabolism in ragi (Eleusine coracane) leaves during water stress. J. Biosci. 3:361-369. https://doi.org/10.1007/BF02702623
  17. Kang, H.M. and M.E. Saltveit. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol. Plant. 115:571-576. https://doi.org/10.1034/j.1399-3054.2002.1150411.x
  18. Kata, A. and J.A. Birchler. 2006. Induction of tetraploid derivatives of maize inbred lines by nitrous oxide gas treatment. J. Hered. 97(1):39-44.
  19. Kim, C.H., B.Y. Jung, S.K. Jung, C.H. Lee, H.S. Lee, B.H. Kim and S K. Kim. 2010. Evaluation of antioxidant activity of Platycodon grandiflorum. J. Environ. Toxicol. 25(1):85-94.
  20. Kim, I. K., H. H. Kim, E. Y. Hong, J. S. Yun, T. Yun, J. K. Hwang and C. H. Lee. 2003. Breeding of tetraploid in Platycodon grandiflorum (Jacq.) A. DC. by colchicine treatment. Korean J. Plant Res. 6(3):188-194.
  21. Kim, I.K., H.H. Kim, E.Y. Hong, J.S. Yun, T. Yun, J.K. Hwang and CH. Lee. 2003. Trautvetter by colchicine treatment. Korean J. Plant Res. 6(3):227-232.
  22. Kim, K.S., O. Ezaki, S. Ikemoto and H. Itakura. 1995. Effects of Platycodon grandiflorum feeding on serum and liver lipid concentrations in rats with diet-induced hyperlipidemia. J. Nutr. Sci. Vitaminol. 41:485-491. https://doi.org/10.3177/jnsv.41.485
  23. Lee. E.B. 1973. Pharmacological studies on Platycodon grandiflorum A. DC. IV. A comparison of experimental pharmacological effects of crude platycodin with clinical indications of Platycodi Radix. Yakugaku Zasshi 93:1188-1194. https://doi.org/10.1248/yakushi1947.93.9_1188
  24. Lee, K.J., J.Y. Kim, K.S. Jung, C.Y. Choi, Y.C. Chung, D.H. Kim and H.G. Jeong. 2004. Suppressive effects of Platycodon grandiflorum on the progress of carbon tetrachlorideinduced hepatic fibrosis. Arch. Pharm. Res. 27:1238-1244. https://doi.org/10.1007/BF02975888
  25. Lewis, W.H. 1980. Ploidy: Biological Relevance. Plenum, NewYork, USA.
  26. Liu, G., Z. Li and M. Bao. 2007. Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157(1-2):145-154. https://doi.org/10.1007/s10681-007-9406-6
  27. Luckett, D.J. 1989. Colchicine mutagenesis is associated with substantial heritable variation in cotton. Euphytica 42( 1-2):177-182. https://doi.org/10.1007/BF00042630
  28. Mishra, N.P., R.K. Mishra and G.S. Singhal. 1993. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol. 102:903-910. https://doi.org/10.1104/pp.102.3.903
  29. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  30. Moftah, A.H. and B.E. Michel. 1987. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiol. 83:238-240. https://doi.org/10.1104/pp.83.2.238
  31. Najami, N., J. Tibor, W. Barriah, G. Kayam, T. Moshe, M. Guy and M. Volokita. 2008. Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol. Genet. Genom. 279:171-182. https://doi.org/10.1007/s00438-007-0305-2
  32. Petersen, K.K., P. Hagberg and K. Kristiansenk. 2003. Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell Tiss. Org. Cult. 73(2):137-146.
  33. Pinheiro, A.A., M.T. Pozzobon, C.B. Do Valle, M.I.O. Penteado and V.T.C. Carneiro. 2000. Duplication of the chromosome number of diploid Brachiaria brizantha plants using colchicine. Plant Cell Rep. 19(3):274-278. https://doi.org/10.1007/s002990050011
  34. Ryu, C.S., C.H. Kim, S.Y. Lee, K.S. Lee, K.J. Choung, G.Y. Song, B.H. Kim, S.Y. Ryu, H.S. Lee and S.K. Kim. 2012. Evaluation of the total oxidant scavenging capacity of saponins isolated from Platycodon grandiflorum. Food Chemistry 132(1):333-337. https://doi.org/10.1016/j.foodchem.2011.10.086
  35. Thao, N.T.P., K. Ureshino, I. Miyajima, Y. Ozaki and H. Okubo. 2003. Induction of tetraploids in ornamental Alocasia through colchicine and oryzalin treatments. Plant Cell Tiss. Org. Cult. 72:19-25. https://doi.org/10.1023/A:1021292928295
  36. Wang, X.H., L. Xiong, Y.H. Qu, J. Yang and Z.J. Gu. 2006. The polyploidy induction and identification of Platycodon grandiflorus (Campanulaceae) in China. Acta Botanica Yunnanica 28(6):593-598.
  37. Wheeler, G.L., M.A. Jones and N. Smirnoff. 1998. The biosynthetic pathway of vitamin C in higher plants. Nature 393:363-369. https://doi.org/10.1038/30724
  38. Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322:681-692. https://doi.org/10.1042/bj3220681
  39. Wu, Y., F. Yang, X. Zhao and W. Yang. 2011. Identification of tetraploid mutants of Platycodon grandiflorus by colchicines induction. Caryologia 64(3):343-349. https://doi.org/10.1080/00087114.2011.10589801
  40. Yokozawa, T., C. P. Chen, E. Dong, T. Tanaka, G.I. Nonaka and I. Nishioka. 1998. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem. Pharm. 56:213-222. https://doi.org/10.1016/S0006-2952(98)00128-2
  41. Zhao, H.L., K.H. Cho, Y.W. Ha, T.S. Jeong, W.S. Lee and Y.S. Kim. 2006. Cholesterol lowering effect of platycodin D in hyper cholesterolemic ICR mice. Eur. J. Pharm. 537:166-173. https://doi.org/10.1016/j.ejphar.2006.03.032
  42. Zhao, H.L. and Y.S. Kim. 2004. Determination of the kinetic properties of platycodin D for the inhibition of pancreatic lipase using a 1, 2 - diglyceride based colorimetric assay. Archives of Pharmacal Research 27:1048-1052. https://doi.org/10.1007/BF02975430
  43. Zhou, B.Y., Z.F. Guo and Z.L. Liu. 2005. Effects of abscisic acid on antioxidant systems of Stylosanthes guianensis (Aublet) Sw. under chilling stress. Crop Sci. 45:599-605. https://doi.org/10.2135/cropsci2005.0599
  44. Zhu, N., M. Wang, G.J. Wei, J.K. Lin, C.S. Yang and C.T. Ho. 2001. Identification of reaction products of (-)-epigallocatechin, (-)-epigallocatechin gallate and pyrogallol with 2,2-diphenyl-1- picrylhydrazyl radical. Food Chem. 73:345-349. https://doi.org/10.1016/S0308-8146(00)00308-3

Cited by

  1. Identification and Characterization of Diploid and Tetraploid in Platycodon grandiflorum vol.72, pp.1, 2017, https://doi.org/10.1007/s11130-016-0589-7
  2. Comparison of the Antioxidative Abilities of Greenhouse-Grown Cucumber According to Cultivars and Growth Stages vol.26, pp.5, 2013, https://doi.org/10.7732/kjpr.2013.26.5.548
  3. Evaluation of Cytotoxicity, Antimicrobial and Antioxidant Enzyme Activity of Diploid and Tetraploid Platycodon grandiflorum vol.60, pp.2, 2015, https://doi.org/10.7740/kjcs.2015.60.2.239
  4. Comparison of Yield and Growth Characteristics of Platycodon grandiflorum According to the Ploidy Levels and Growing Conditions vol.29, pp.3, 2016, https://doi.org/10.7732/kjpr.2016.29.3.331
  5. Morphological, physiological and genomic comparisons between diploids and induced tetraploids in Anemone sylvestris L. vol.132, pp.2, 2018, https://doi.org/10.1007/s11240-017-1331-3
  6. Kinnow mandarin plants grafted on tetraploid rootstocks are more tolerant to Cr-toxicity than those grafted on its diploids one vol.140, 2017, https://doi.org/10.1016/j.envexpbot.2017.05.011
  7. FISH Karyotype Comparison of Platycodon grandiflorus (Jacq.) A. DC. ‘Jangbaek’ and Its Colchicine-Induced Tetraploid ‘Etteumbaek vol.8, pp.4, 2013, https://doi.org/10.9787/pbb.2020.8.4.389