DOI QR코드

DOI QR Code

Distribution of Multidrug Efflux Pump Genes in Enterococci spp. Isolated from Bovine Milk Samples and Their Antibiotic Resistance Patterns

원유 시료에서 분리한 장알균속 세균의 다중약물 유출 펌프(Multidrug Efflux Pump) 유전자의 분포도와 항생제 내성 패턴

  • Received : 2013.03.26
  • Accepted : 2013.06.09
  • Published : 2013.06.30

Abstract

The major aim of this study was to investigate the distribution of genes that encode multidrug efflux pumps in Enterococci spp. isolates from bovine milk samples and antibiotic resistance patterns of these strains. Of the 245 isolates, 44.1% showed ampicillin resistance, 79.2% showed erythromycin resistance, 76.3% showed tetracycline resistance and 36.3% showed chloramphenicol resistance. In case of vancomycin and ciprofloxacin, all of the isolates were susceptible to these antibiotics. Of the 245 enterococcal isolates, 82.1% have MFS type eme(A) gene, 72.7% have ABC type efr(A) gene, 77.1% have ABC type efr(B) gene, and 71.8% have ABC type lsa gene. In case of Enterococcus faecalis, the original strain for these genes, 92.5% have eme(A), 87.4% have efr(A), 88.4% have efr(B), and 88.4% have lsa. Interestingly, in case of different species of Enterococci, eme(A) was also detected in four strains of E. faecium, seven strains of E. avium, four strains of E. durans and two strains of E. raffinosus. efr(A) was also detected in two strains of E. faecium and two strains of E. durans and efr(B) was also detected in four strains of E. faecium, five strains of E. avium and four strains of E. durans. This means the possibility of co-transfer of resistance genes between Enterococci species in natural environment. These results are the first report describing the presence of same multidrug efflux pumps in different species of Enterococci in Korea.

원유시료에서 분리한 장알균속 세균 245균주의 항생제 내성에 관여하는 다중약물 유출 펌프 유전자 분포도와 항생제 내성 패턴을 연구하였다. 그 결과 245 장알균속 균주의 ampicillin에 대한 내성률은 44.1%, erythromycin에 대한 내성률은 79.2%, tetracycline에 대한 내성률은 76.3%, chloramphenicol에 대한 내성률은 36.3%였으며 vancomycin과 ciprofloxacin에 대해서는 모두 감수성임을 알 수 있었다. 내성 관련 유전자 중 MFS타입의 eme(A)는 82.1%의 장알균에 분포하였으며, ABC 타입의 유전자인 efr(A)는 72.7%, efr(B)는 77.1%, lsa는 71.8%의 장알균에 분포하였다. 특히 이러한 유전자의 기원 세균인 Enterococcus faecalis의 경우 eme(A)는 92.5%, efr(A)는 87.4%, efr(B)는 88.4%, lsa는 88.4%의 분포도를 나타내었다. 한편 동일한 장알균속이지만 종이 다른 장알균에서 eme(A)는 E. faecium 4균주, E. avium 7균주, E. durans 4균주 및 E. raffinosus 2균주에 분포하고 있었다. efr(A)는 E. faecium 2균주와 E. durans 2균주에 분포하였으며, efr(B)는 E. faecium 4균주, E. avium 5균주 및 E. durans 4균주에 분포하였다. 본 연구는 우리나라 원유시료에서 분리한 장알균속의 여러 종의 세균에서 동일한 다중약물 유출 펌프(multidrug efflux pump)의 분포에 대한 첫 번째 보고라 사료되며 E. faecalis 이외의 장알균속에서 이러한 유전자의 분포는 서로 다른 종간의 유전자의 수평적인 이동의 가능성을 시사한다.

Keywords

References

  1. CLSI. 2007. Performance standards for antimicrobial susceptibility testing: seventeenth informational supplement. Clinical and Laboratory Standards Institute. ASM press, Washington, D.C., USA.
  2. Depardieu, F., Podglajen, I., Leclercq, R., Collatz, E., and Courvalin, P. 2007. Modes and modulations of antibiotic resistance gene expression. Clin. Microbiol. Rev. 20, 79-114. https://doi.org/10.1128/CMR.00015-06
  3. Devriese, L.A., Collins, M.D., and Wirth, R. 1992. The genus Enterococcus. In Ballows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. (eds.) The Prokaryotes, 2nd edn., vol. 2, pp. 1465-1478, Springer-Verlag, New York, N.Y., USA.
  4. Flahaut, S., Boutibonnes, P., and Auffray, Y. 1997. Les enterocoques dans I'environnement proche de I'homme. Canad. J. Microbiol. 43, 699-708. https://doi.org/10.1139/m97-101
  5. Grkovic, S., Brown, M.H., and Skurray, R.A. 2002 Regulation of bacterial drug export systems. Microbiol. Mol. Biol. Rev. 66, 671-701. https://doi.org/10.1128/MMBR.66.4.671-701.2002
  6. Hollenbeck, B.L. and Rice, L.B. 2012. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3, 421-433. https://doi.org/10.4161/viru.21282
  7. Jack, D.L., Yang, N.M., and Saier, M.H.Jr. 2001. The drug/metabolite transporter superfamily. Eur. J. Biochem. 268, 3620-3639. https://doi.org/10.1046/j.1432-1327.2001.02265.x
  8. Jeong, S.H., Lim, S.K., Lee, H.S., Jeong, B.Y., Lee, J.Y., Yang, C.B., and Shin, H.C. 2008. The present situation of antibiotics used in animal and resistant bacteria. Infect. Chemother. 40, Suppl.2 144-149.
  9. Jonas, B.M., Murray, B.E., and Weinstock, G.M. 2001. Characterization of emeA, a NorA homolog and multidrug resistance efflux pump, in Enterococcus faecalis. Antimicrob. Agents Chemother. 45, 3574-3579. https://doi.org/10.1128/AAC.45.12.3574-3579.2001
  10. Kim, J.H. and Choi, S.S. 2012. Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from raw milk samples in Korea. J. Fd. Hyg. Safety 27, 63-67. https://doi.org/10.13103/JFHS.2012.27.1.063
  11. Kim, J.H., Lee, S.J., and Choi, S.S. 2012. Copper resistance and its relationship with erythromycin resistance in Enterococcus isolates from bovine milk samples in Korea. J. Microbiol. 50, 540-543. https://doi.org/10.1007/s12275-012-1579-6
  12. Klein, G., Pack, A., and Reuter, G. 1998. Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl. Environ. Microbiol. 64, 1825-1830.
  13. Kuroda, T. and Tsuchiya, T. 2009. Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta. 1794, 763-768. https://doi.org/10.1016/j.bbapap.2008.11.012
  14. Kwon, Y.I., Kim, T.W., Kim, H.Y., Chang, Y.H., Kwak, H.S., Woo, G.I., and Chung, Y.H. 2007. Monitoring of antimicrobial resistant bacteria from animal farm environments in Korea. Kor. J. Microbiol. Biotechnol. 35, 17-25.
  15. Lee, E.W., Huda, M.N., Kuroda, T., Mizushima, T., and Tsuchiya, T. 2003. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob. Agents Chemother. 47, 3733-3738. https://doi.org/10.1128/AAC.47.12.3733-3738.2003
  16. Levy, S.B. 1992. Active efflux mechanisms for antimicrobial resistance. Antimicrob. Agents Chemother. 36, 695-703. https://doi.org/10.1128/AAC.36.4.695
  17. Lubelski, J., Konings, W.N., and Driessen, A.J. 2007. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol. Mol. Biol. Rev. 71, 463-476. https://doi.org/10.1128/MMBR.00001-07
  18. Malani, P.N., Kauffman, C.A., and Zervos, M.J. 2002. Enterococcal disease, epidemiology and treatment. In Gilmore, M.S. (ed.) The Enterococci: pathogenesis, molecular biology and antimicrobtiotic resistance. pp. 385-408. Amercan Society for Mcirobiology. Washington, D.C., USA.
  19. Mannu, L., Paba, A., Daga, E., Comunian, R., Zanetti, S., Dupre, I., and Sechi, L.A. 2003. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int. J. Food Microbiol. 88, 291-304. https://doi.org/10.1016/S0168-1605(03)00191-0
  20. Nam, H.M., Lim, S.K., Moon, J.S., Kang, H.M., Kim, J.M., Jang, K.C., Kim, J.M., Kang, M.I., Joo, Y.S., and Jung, S.C. 2009. Antimicrobial resistance of enterococci isolated from mastitic bovine milk samples in Korea. Zoonoses Public Health. 57, 59-64.
  21. NORM. NORM-VET. 2003. Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway, pp. 1-72.
  22. OIE. European Scientific Conference. 2001. The use of antibiotics in animal ensuring the protection of public health, pp. 8-142.
  23. Pao, S.S., Paulsen, I.T., and Saier, M.H.Jr. 1998. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1-34.
  24. Putman, M., van Veen, H.W., and Konings, W.N. 2000. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64, 672-693. https://doi.org/10.1128/MMBR.64.4.672-693.2000
  25. Saier, M.H.Jr., Tam, R., Reizer, A., and Reizer, J. 1994. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol. Microbiol. 11, 841-847. https://doi.org/10.1111/j.1365-2958.1994.tb00362.x
  26. Sanchez, V.A., Lavilla, L.L., Benomar, N., Galvez, A., Perez, P.R., and Abriouel, H. 2013. Phenotypic and molecular antibiotic resistance profile of Enterococcus faecalis and Enterococcus faecium isolated from different traditional fermented foods. Foodborne Pathog. Dis. 10, 143-149. https://doi.org/10.1089/fpd.2012.1279
  27. Seeger, M.A., Diederichs, K., and Eicher, T. 2008. The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. Curr. Drug Targets. 9, 729-749. https://doi.org/10.2174/138945008785747789
  28. Singh, K.V., Weinstock, G.M., and Murray, B.E. 2002. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob. Agents Chemother. 46, 1845-1850. https://doi.org/10.1128/AAC.46.6.1845-1850.2002
  29. Tseng, T.T., Gratwick, K.S., and Kollman, J. 1999. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1, 107-125.

Cited by

  1. in Tehran, Iran pp.1588-2640, 2018, https://doi.org/10.1556/030.65.2018.016