DOI QR코드

DOI QR Code

증발하는 물방울의 계면활성제에 의한 열모세관 유동 억제

Surfactant-Induced Suppression of the Thermocapillary Flow in Evaporating Water Droplets

  • 윤성찬 (포항공과대학교 기계공학과) ;
  • 김태권 (부산대학교 기계공학부) ;
  • 임희창 (부산대학교 기계공학부) ;
  • 강관형 (포항공과대학교 기계공학과) ;
  • 임근배 (포항공과대학교 기계공학과)
  • Yun, Sungchan (Dept. of Mechanical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Tae Kwon (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lim, Hee Chang (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kang, Kwan Hyoung (Dept. of Mechanical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Lim, Geunbae (Dept. of Mechanical Engineering, Pohang University of Science and Technology (POSTECH))
  • 투고 : 2013.01.21
  • 심사 : 2013.05.21
  • 발행 : 2013.07.01

초록

본 논문은 비이온의 계면 활성제에 의해 증발하는 물방울의 열모세관 유동(마랑고니 유동)이 억제되는 것을 실험적으로 검증한다. 물방울이 소수성 표면 위에서 증발할 때, 액적 내부의 마랑고니 유동을 관찰하였고, 계면 활성제 농도에 따라 이 유동이 억제되는 것을 조사하였다. 초기 계면 활성제 농도가 증가하면, 마랑고니 유동의 속도와 수명이 감소한다. 이 결과는 계면 활성제에 의해 액적 계면에서 점착 경계 조건이 성립됨을 보여주는데, 이것은 계면 점착 현상과 관련된 기존의 모델에 기초하여 설명되었다. 또한 액적의 초기 계면 활성제 농도가 임계 농도 이하일 때, 증발 초기 접촉선 비고정 현상을 발견했는데, 이것은 마랑고니 유동이 접촉각의 이력 현상을 감소시키기 때문이다.

The suppression of a thermocapillary flow (Marangoni flow) by a nonionic surfactant is experimentally investigated for evaporating pure water droplets on hydrophobic substrates. The experiment shows that as the initial concentration of the surfactant increases, the velocity and lifetime of the flow monotonically decrease. The result confirms the no-slip boundary condition at a liquid-air interface, which is explained on the basis of the previous model regarding the effect of surfactants on the no-slip condition. Interestingly, at an initial concentration much less than a critical value, it is found that depinning of the contact line occurs during the early stage of evaporation, which is ascribed to a reduction in the contact angle hysteresis owing to the presence of the Marangoni flow.

키워드

참고문헌

  1. Birdi, K. and Vu, D., 1989, "A Study of the Evaporation Rates of Small Water Drops Placed on a Solid Surface," The Journal of Physical Chemistry, Vol. 93, No. 1, pp. 3102-3103.
  2. Sirringhaus, H., Kawase, T., Friend, R., and Shimoda, T., 2000, "High-resolution Inkjet Printing of All- Polymer Transistor Circuits," Science, Vol. 290, No. 5499, pp. 2123-2126. https://doi.org/10.1126/science.290.5499.2123
  3. Dugas, V., Broutin, J., and Souteyrand, E., 2005, "Droplet Evaporation Study Applied to DNA Chip Manufacturing," Langmuir, Vol. 21, No. 20, pp. 9130-9136. https://doi.org/10.1021/la050764y
  4. Davis, S., 1987, "Thermocapillary Instabilities," Annual Review of Fluid Mechanics, Vol. 19, No. 1, pp. 403-435. https://doi.org/10.1146/annurev.fl.19.010187.002155
  5. Hu, H. and Larson, R. G., 2005, "Microflow in an Evaporating Sessile Droplet," Langmuir, Vol. 21, No. 19, pp. 8271-8279.
  6. Hu, H. and Larson, R. G., 2006, "Marangoni Effect Reverses Coffee-Ring Depositions," The Journal of Physical Chemistry B, Vol. 110, No. 14, pp. 7090-7094. https://doi.org/10.1021/jp0609232
  7. Hu, H. and Larson, R. G., 2006, "Marangoni Effect Reverses Coffee-Ring Depositions," The Journal of Physical Chemistry B, Vol. 110, No. 14, pp. 7090-7094. https://doi.org/10.1021/jp0609232
  8. Buffone, C., Sefiane, K., and Easson, W., 2005, "Marangoni-Driven Instabilities of an Evaporating Liquid-Vapor Interface," Physical Review E, Vol. 71, No. 5, pp. 056302. https://doi.org/10.1103/PhysRevE.71.056302
  9. Deegan, R., Bakajin, O., Dupont, T., and Huber, G., 1997, "Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops," Nature, Vol. 389, No. 6653, pp. 827-829. https://doi.org/10.1038/39827
  10. Savino, R. and Fico, S., 2012, "Transient Marangoni Convection in Hanging Evaporating Drops," Physics of Fluids, Vol. 16, No. 10, pp. 3738.
  11. Xu, X. and Luo, J., 2007, "Marangoni Flow in an Evaporating Water Droplet," Applied Physics Letters, Vol. 91, No. 12, pp. 124102. https://doi.org/10.1063/1.2789402
  12. Farley, R. W. and Schechter, R. S., 1966, "Retardation of Surface Velocities by Surfactants," Chemical Engineering Science, Vol. 21, pp. 1079-1093. https://doi.org/10.1016/0009-2509(66)85103-5
  13. Chen, J. and Stebe, K. J, 1997, "Surfactant-Induced Retardation of the Thermocapillary Migration of a Droplet," Journal of Fluid Mechanics, Vol. 340, pp. 35-59. https://doi.org/10.1017/S0022112097005156
  14. Cuenot, B., Magnaudet, J., and Spennato, B., 1997, "The Effects of Slightly Soluble Surfactants on the Flow Around a Spherical Bubble," Journal of Fluid Mechanics, Vol. 339, pp. 25-53. https://doi.org/10.1017/S0022112097005053
  15. Lee, H. W., Kang, K. H., Lee, C. M. and Lee, S. J., 2005, "Scaling Relations for the Flow Inside an Evaporating Droplet and the Effect of No-slip Boundary Condition on Droplet Surface," Proceedings of the KSME 2005 Fall Annular Meeting, pp. 862-867.
  16. Kang, K. H., Lim, H. C., Lee, H. W. and Lee, S. J., 2013, "Evaporation-induced Saline Rayleigh Convection Inside a Colloidal Droplet," Physics of Fluids, Vol. 25, pp. 042001. https://doi.org/10.1063/1.4797497
  17. Kang, K. H., Lee, S. J., Lee, C. M., and Kang, I. S., 2004, "Quantitative Visualization of Flow Inside an Evaporating Droplet Using the Ray Tracing Method," Measurement Science and Technology, Vol. 15, No. 6, pp. 1104-1112. https://doi.org/10.1088/0957-0233/15/6/009
  18. Picknett, R. and Bexon, R., 1977, "The Evaporation of Sessile or Pendant Drops in Still Air," Journal of Colloid and Interface Science, Vol. 61, No. 2, pp. 336-350. https://doi.org/10.1016/0021-9797(77)90396-4
  19. Soolaman, D. and Yu, H., 2005, "Water Microdroplets on Molecularly Tailored Surfaces: Correlation Between Wetting Hysteresis and Evaporation Mode Switching," The Journal of Physical Chemistry B, Vol. 109, pp. 17967-17973. https://doi.org/10.1021/jp051182s