• Title/Summary/Keyword: 다중 기체 분사

Search Result 3, Processing Time 0.017 seconds

Cumulative Distributions and Flow Structure of Two-Passage Shear Coaxial Injector with Various Gas Injection Ratio (2중 유로형 전단 동축 분사기의 기체 분사율에 따른 유동 및 입도분포)

  • Lee, Inchul;Kim, Dohun;Koo, Jaye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.675-682
    • /
    • 2013
  • To verify the effect of inner- and outer-stage gas jets, a shear coaxial injector was designed to analyze the axial velocity profile and breakup phenomenon with an increase in the measurement distance. When the measurement position was increased to Z/d=100, the axial flow showed a fully developed shape due to the momentum transfer, aerodynamic drag effect, and viscous mixing. An inner gas injection, which induces a higher momentum flux ratio near the nozzle, produces the greater shear force on atomization than an outer gas injection. Inner- and Outer-stage gas injection do not affect the mixing between the inner and outer gas flow below Z/d=5. The experiment results showed that the main effect of liquid jet breakup was governed by the gas jet of an inner stage. As the nozzle exit of the outer-stage was located far from the liquid column, shear force and turbulence breaking up of the liquid jets do not fully affect the liquid column. In the case of an inner-stage gas injection momentum flux ratio within 0.84, with the increase in the outer gas momentum flux ratio, the SMD decreases. However, at an inner-stage gas jet momentum flux ratio over 1.38, the SMD shows the similar distribution.

Comparison of Combustion Efficiency of Multi Hole Pintle Injector and Continuous Pintle Injector (다중 홀 핀틀 인젝터와 연속형 핀틀 인젝터의 연소성능 비교)

  • Nam, JeongSoo;Lee, KeonWoong;Koo, JaYe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.165-172
    • /
    • 2022
  • Pintle injector is the most suitable injector for thrust control because it can control the area of propellant injection. Accordingly, the combustion test of multiple hole pintle injector and continuous type pintle injector was carried out in this paper using liquid oxygen and gas methane. The combustion performance of the two pintles was verified with the characteristic speed efficiency, and the experimental results were compared according to the O/F and combustion chamber pressure and under similar conditions. The efficiency of the multi hole pintle was generally somewhat higher than continuous pintle when pintle opening distance(the area of dispensing oxidizer) was in a 100% thrust condition.

Performance Test of a Single Pulse Gun for Transverse Pressure Wave Generation (횡단압력파 발생을 위한 단일 펄스건의 압력파 성능시험)

  • Lee, Jongkwon;Song, Wooseok;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.599-606
    • /
    • 2019
  • The pulse gun device is designed to identify the transverse pressure wave propagation/damping mechanism into the combustion flow field and in the combustion chamber according to the arrangement of multiple injectors. The manufactured pulse gun was tested to verify operability at the target combustion pressure and control of the pressure wave intensity. Gas nitrogen was used to pressurize the high-pressure tube and an OHP film of $100{\mu}m$ thickness was used for the diaphragm. To check the speed and intensity of the pressure waves, the dynamic and static pressure were measured using the pressure transducer. The performance test confirmed that the manufactured pulse gun can generate pressure waves with transverse characteristics that can be controled for strength depending on the supply pressure.