DOI QR코드

DOI QR Code

Optimization of 1-3 Type Piezocomposite Structures Considering Inter-Pillar Vibration Modes

Inter-Pillar 진동 모드를 고려한 1-3형 압전복합체의 구조 최적화

  • Pyo, Seonghun (Department of Mechanical Engineering, Kyungpook National University) ;
  • Kim, Jinwook (Department of Mechanical Engineering, Kyungpook National University) ;
  • Roh, Yongrae (Department of Mechanical Engineering, Kyungpook National University)
  • Received : 2013.05.21
  • Accepted : 2013.05.24
  • Published : 2013.06.01

Abstract

With polymer properties and ceramic volume fraction as design variables, the optimal structure of 1-3 piezocomposites has been determined to maximize the thickness mode electromechanical coupling factor. When the piezocomposite vibrates in a thickness mode, inter-pillar resonant modes are likely to occur between lattice-structured piezoceramic pillars and polymer matrix, which significantly deteriorates the performance of the piezocomposite. In this work, a new method to design the structure of the 1-3 type piezocomposite is proposed to maximize the thickness mode electromechanical coupling factor while preventing the occurrence of the inter-pillar modes. Genetic algorithm was used for the optimal design, and the finite element analysis method was used for the analysis of the inter-pillar mode.

Keywords

References

  1. T. R. Gururaja, W. A. Schulze, L. E. Cross, R. E. Newnham, B. A. Auld, and Y. J. Wang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 32, 481 (1985).
  2. R. E. Newnham, Ferroelect., 68, 1 (1986). https://doi.org/10.1080/00150198608238734
  3. E. K. Akdogan, M. Allahverdi, and A. Safari, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 32, 1 (1986).
  4. R. E. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull., 13, 525 (1978). https://doi.org/10.1016/0025-5408(78)90161-7
  5. M. Avellaneda and P. J. Swart, J. Acoust. Soc. Am., 103, 1449 (1998). https://doi.org/10.1121/1.421306
  6. K. C. Benjamin, J. Electroceram., 8, 145 (2002). https://doi.org/10.1023/A:1020508130249
  7. C. Xina, X. Dongyub, L. Lingchaoa, H. Shifenga, and J. Minhuab, Mater. Chem. Phys., 121, 63 (2010). https://doi.org/10.1016/j.matchemphys.2009.12.045
  8. O. Sigmund, S. Torquato, and I. A. Aksay, J. Mater. Res., 13, 1038 (1998). https://doi.org/10.1557/JMR.1998.0145
  9. L. V. Giviansky and S. Torquato, Struct. Optim., 13, 23 (1997). https://doi.org/10.1007/BF01198372
  10. W. A. Smith and B. A. Auld, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 38, 40 (1991). https://doi.org/10.1109/58.67833
  11. W. A. Smith, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 40, 41 (1993). https://doi.org/10.1109/58.184997
  12. B. A. Auld and Y. Wang, IEEE Trans. Ultrason. Symp., 528 (1984).
  13. D. Certon, F. Patat, F. Levassort, G. Feuillard, and B. Karlsson, J. Acoust. Soc. Am., 101, 2043 (1997). https://doi.org/10.1121/1.418136
  14. P. Reynolds, J. Hyslop, and G. Hayward, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2, 1650 (2003).
  15. F. Craciun, L. Sorba, E. Molinari, and M. Pappalardo, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 36, 50 (1989). https://doi.org/10.1109/58.16968
  16. Y. Wang, Waves and Vibration in Elastic Superlattice Composite (Ph.D. Dissertation, Stanford Univ., 1986).
  17. D. Robertson, G. Hayward, A. Gachagan, and V. Murray, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 1503 (2006). https://doi.org/10.1109/TUFFC.2006.1665108
  18. C. N. Della and D. Shu, Sens. Actuat. A Phys., 40, 206 (2007).
  19. H. L. W. Chan and J. Unsworth, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 36, 434 (1989). https://doi.org/10.1109/58.31780
  20. J. F. Nye, Physical Properties of Crystals (Oxford Univ. Press, New York, 1985).