DOI QR코드

DOI QR Code

자동화 토공을 위한 3D 토량배분과 탄소발생량 추정

3D-based Earthwork Planning and CO2 Emission Estimation for Automated Earthworks

  • 김성근 (서울과학기술대학교 건설시스템디자인공학과)
  • 투고 : 2013.02.08
  • 심사 : 2013.02.18
  • 발행 : 2013.05.30

초록

기존의 토공 자동화 연구들은 주로 GPS와 센서의 응용, 작업환경 모델링, 장비 진로계획, 작업 정보관리, 원격조정 등과 같은 주제에 관심을 두었다. 최근에는 건설자동화 연구분야에서 $CO_2$ 감축이 주요 관심사의 하나로 대두되었다. 토공작업의 경우에는 많은 종류의 건설장비나 로봇들이 관여되므로 건설현장에서 많은 양의 $CO_2$를 배출하는 작업이 되고 있다. 효과적인 토공계획과 건설장비 운영은 생산성 및 안전성을 증가시킬 뿐만 아니라 $CO_2$ 배출량도 줄일 수 있다. 본 연구에서는 3D 토공현장 모델, 2가지 시공법에 의한 3D 토량배분 방법, 토공작업 패키지 구성방법과 같은 그린 토공을 위한 몇 가지 자동화 개념을 제시하고 있다. 엑셀로 작성된 시뮬레이터를 개발을 통하여 주어진 토공작업에 대하여 3D 토량배분 계획을 수립하였고 $CO_2$ 배출량을 추정하였다.

The former researches on earthwork automation were mainly focused on GPS and sensor application, environment modelling, equipment path planning, work information management, and remote control etc. Recently, reducing $CO_2$ emission becomes one of main focuses for an automation research. In the case of earthwork operations, many kinds of construction machines or robots are involved, which can cause high level of $CO_2$ in a construction site. An effective earthwork plan and construction machine operation can both increase productivity and safety and decrease $CO_2$ emission level. In this research, some automation concepts for green earthworks are suggested such as a 3D construction site model, a 3D earthwork distribution based on two different earthwork methods, and an earthwork package construction method. A excel-based simulator is developed to generate the 3D earthwork distribution and to estimate the level of $CO_2$ emission for the given earthwork.

키워드

참고문헌

  1. Cass, D., and Mukherjee, A. (2011). "Calculation of greenhouse gas emissions for highway construction operations using a hybrid life cycle assessment approach: A Case Study for Pavement Operations." Journal of Construction Engineering and Management, ASCE, Vol. 137, No. 11, pp. 1015-1025. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000349
  2. Ji, Y., Borrmann, A., Rank, E., Seipp, F., and Ruzika, S. (2010). "Mathematical modeling of earthwork optimization problems." Proceedings of the International Conference in Computing in Civil and Building Engineering, Nottingham, UK, Nottingham University Press, Paper 202, pp. 403-409.
  3. Kang, T. W., Cho, Y. H. (2011). "The study on the optimized earthwork transfer path algorithm considering the precluded area of massive cutting and banking." International Journal of Highway Engineering, Vol. 13, No. 4, pp. 1-8 (in Korean).
  4. Kim, B. S. (2011). "Correlation analysis on the duration and $CO_{2}$ emission following the earth-work equipment combination". Journal of the Korean Society of Civil Engineers, KSCE, Vol. 31, No. 4D, pp. 603-611 (in Korean).
  5. Kim, C. H., Shin, M. H., Kang, L. S. (2010). "Integrated information system for environmental and economic evaluation." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 30, No. 6D, pp. 615-622 (in Korean).
  6. Kim, S. K, Lee, D. G., Kim, H. C. (2005). "A model for allocating automated earthwork equipment using contract net." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 25, No. 5D, pp. 721-727 (in Korean).
  7. Kim, S. K., Min, S, G. (2012a). "Development of a work information model and a work path simulator for an intelligent excavation." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 32, No. 3D, pp. 259-267 (in Korean). https://doi.org/10.12652/Ksce.2012.32.6C.259
  8. Kim, S. K., Min, S, G. (2012b). "evelopment of core technologies for a low-carbon automated earthwork." Proceedings of the 13th KICEM Annual Conference, KICEM, Vol. 12, pp. 507-508. (in Korean)
  9. Kim, S. K., Russell, J. S. (2003a). "Framework for an intelligent earthwork system. Part II. Task identification/scheduling and resource allocation methodology." Automation in Construction, Vol. 12, No. 1, pp. 15-27. https://doi.org/10.1016/S0926-5805(02)00033-X
  10. Kim, S. K., Russell, J. S., Koo, K. J. (2003b). "Construction robot path planning for earthwork operations." Journal of Computing in Civil Engineering, ASCE, Vol. 17, No. 2, pp. 97-104. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:2(97)
  11. Kim, S. K., Seo, J. W., Russell, J. S. (2012). "Intelligent navigation strategies for an automated earthwork system." Automation in Construction, Vol. 21, No. 1, pp. 132-147. https://doi.org/10.1016/j.autcon.2011.05.021
  12. Lee, C. K., Kim, S. K., Sung, Y. J. (2003). "A study on 2D-based earthwork planning methods." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 23, No. 3D, pp. 349-358 (in Korean).
  13. Lee, J. N., Pyeon, M. W., Koo, J. H., Park, J. S. (2010). "Earthwork plan using the precise 3D topographic data." Journal of the Korean Society for Geospatial Information System, Vol. 18, No. 1, pp. 63-72 (in Korean).
  14. Moon, J. S. (2009). LCA analysis and case study of environment factors for highway construct project, MSc thesis, GyeongSang National University (in Korean).

피인용 문헌

  1. A Multi-agent based Cooperation System for an Intelligent Earthwork vol.34, pp.5, 2014, https://doi.org/10.12652/Ksce.2014.34.5.1609
  2. Development of a Fleet Management System for Cooperation Among Construction Equipment vol.36, pp.3, 2016, https://doi.org/10.12652/Ksce.2016.36.3.0573
  3. An Approach for Solid Modeling and Equipment Fleet Management Towards Low-Carbon Earthwork vol.35, pp.2, 2015, https://doi.org/10.12652/Ksce.2015.35.2.0501
  4. Development of a Soil Distribution Method and Equipment Operation Models Using Worker's Heuristics vol.36, pp.3, 2016, https://doi.org/10.12652/Ksce.2016.36.3.0551