DOI QR코드

DOI QR Code

영역분할법을 이용한 2차원 유한차분 시간영역법 해석

2D Finite Difference Time Domain Method Using the Domain Decomposition Method

  • 홍익표 (국립공주대학교 정보통신공학부)
  • 투고 : 2013.01.08
  • 심사 : 2013.02.25
  • 발행 : 2013.05.31

초록

본 논문에서는 영역분할법을 이용한 2차원 유한차분시간영역법을 제안하였다. 영역분할법은 전체 해석구조를 분할하여 해석하는 수치해석방법으로 본 논문에서는 영역분할법 중 Schur complement 방법을 적용한 유한차분 시간영역법을 구현하고 시뮬레이션 모델로 2차원 해석구조를 설정하고 사각형의 도체에 입사하는 전자파의 산란특성을 해석하였다. 2차원 해석구조를 4개의 영역과 8개의 영역으로 각각 나누어 전자파특성을 계산하였고, 제안한 해석방법의 유효함을 입증하기 위해 일반적인 전체영역에 대한 2차원 유한차분 시간영역법의 해석결과와 비교하여 잘 일치하는 것을 확인하였다.

In this paper, two-dimensional(2-D) Finite Difference Time Domain(FDTD) method using the domain decomposition method is proposed. We calculated the electromagnetic scattering field of a two dimensional rectangular Perfect Electric Conductor(PEC) structure using the 2-D FDTD method with Schur complement method as a domain decomposition method. Four domain decomposition and eight domain decomposition are applied for the analysis of the proposed structure. To validate the simulation results, the general 2-D FDTD algorithm for the total domain are applied to the same structure and the results show good agreement with the 2-D FDTD using the domain decomposition method.

키워드

참고문헌

  1. D. B. Davidson, Computational Electromagnetics for RF and Microwave Engineering, 2nd Ed., Cambridge University Press, 2010
  2. W. C. Chew, J. M. Jin, E. Michielssen and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001
  3. K. Yee, "Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas & Propagation, vol. 14, no. 3, pp.302-307, 1966 https://doi.org/10.1109/TAP.1966.1138693
  4. A. Taflove and S. C. Hagness, Computational Electrodynamics : the Finite-Difference Time-Domain Method, Boston, 3rd Ed., Artech House, 2005.
  5. R. Mittra, W. Yu and T. Su, Parallel Finite- Difference Time-Domain Method, Boston, Artech House, 2006.
  6. C. Guiffaut and K. Mahdjoubi, "A Parallel FDTD Algorithm Using the MPI Library," IEEE Antennas and Propagation Magazine, vol. 43, no. 2, pp. 94-103, 2001 https://doi.org/10.1109/74.924608
  7. Y. Zhang, W. Ding and C. H. Liang, "Study on the Optimum Virtual Topology for MPI Based Parallel Conformal FDTD Algorithm on PC Clusters," Journal of Electromagnetic Waves and Applications, vol. 19, no. 13, pp. 1817-1831, Oct. 2005 https://doi.org/10.1163/156939305775696856
  8. Z. Cendes and J. F. Lee, "A FEM domain decomposition method for photonic and electromagnetic band gap structures," IEEE Trans. on Antennas & Propagation, vol. 54, no. 2, pp. 721-733, 2006 https://doi.org/10.1109/TAP.2005.863095
  9. Y. Lu, "A domain decomposition finite-difference method for parallel numerical implementation of time-dependent Maxwell's equations," IEEE Trans. on Antennas & Propagation, vol. 45, no. 3, pp. 556-562, 1997 https://doi.org/10.1109/8.558671
  10. T. P. A. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, Springer, 2008