DOI QR코드

DOI QR Code

Relationship of the Clearance Rate and Nonylphenol Uptake Rate of Three Bivalve Species with Different Size Classes and Temperatures

이매패류 3종의 크기 및 수온에 따른 여수율과 노닐페놀 흡수율의 관계

  • Yang, Songyi (Department of Oceanography, College of Natural Science, Chonnam National University) ;
  • Lee, Jong Hyeon (Neo Environmental Business Co.) ;
  • Lee, Byeong Gweon (Department of Oceanography, College of Natural Science, Chonnam National University)
  • Received : 2013.01.18
  • Accepted : 2013.05.22
  • Published : 2013.05.28

Abstract

The present study was conducted to evaluate relationship between nonylphenol uptake rate and clearance rate of Ruditapes philippinarum, Corbicula japonica and Mytilus edulis. Variation of the temperature and body size of the bivalves was used to modulate clearance rate and nonylphenol uptake rate in this experiment. Clearance rate and nonylphenol uptake rate experiments were determined for two different size classes of the bivalves (R. philippinarum: 0.35, 0.73 g, C. japonica : 0.047, 0.1000g, M. edulis: 0.30, 0.37 g; mean flesh dry weight) and three different temperature regime (5, 13 and $18^{\circ}C$). Weight-specific clearance rate in all animal size and temperature ranges increased in the order of R. philippinarum, C. japonica and M. edulis. The weight-specific nonylphenol uptake rate did not show specific trend among species. The clearance rate and nonylphenol uptake rate generally decreased with animal size and increased with water temperature. For all three species nonylphenol uptake rate had a strong relationship with clearance rate. For a given clearance rate ranges, the nonylphenol uptake rate was in the order of R. philippinarum > C. japonica > M. edulis. The results suggest that water ventilation capacity of filter-feeding organisms is an important physiological factor controlling uptake rate of dissolved nonylphenol.

본 연구에서는 두 개의 크기집단의 바지락(Ruditapes philippinarum), 재첩(Corbicula japonica), 홍합(Mytilus edulis)을 세 개의 수온 조건(5, 13 그리고 $18^{\circ}C$)에서 용존 노닐페놀에 노출시킴으로써 개체 크기와 수온 변화가 여수율과 용존 노닐페놀 흡수율에 미치는 영향을 조사하였다. 이를 통해 이매패류의 여수율과 유기화합물질 흡수과정의 관련성에 대해 평가하고자 하였다. 단위무게당 여수율($CR_{wt}$)은 모든 개체 크기와 온도 범위에서 홍합(0.3-4.9 L $g^{-1}\;h^{-1}$)이 가장 높았으며, 재첩(0.44-1.98 L $g^{-1}\;h^{-1}$), 바지락(0.08-0.6 L $g^{-1}\;h^{-1}$) 순으로 나타났다. 한편 단위무게당 노닐페놀의 흡수율은 종 간 뚜렷한 차이를 보이지 않았다. 단위무게당 여수율과 노닐페놀 흡수율은 일반적으로 개체의 크기가 증가함에 따라 감소하고, 온도가 증가함에 따라 증가하는 경향을 보였다. 세 종 모두에서 노닐페놀 흡수율은 여수율과 높은 상관관계를 보였다. 한편 노닐페놀 흡수율은 같은 여수율 범위에서 홍합, 재첩, 바지락 순으로 증가하였다. 여수율과 노닐페놀 흡수율의 높은 상관관계로부터 여수율이 이매패류의 용존 유기화합물 흡수에 중요한 역할을 한다는 것을 추정할 수 있다.

Keywords

References

  1. Ahel, M. and W. Giger, 1993. Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere, 26: 1471-1478. https://doi.org/10.1016/0045-6535(93)90214-P
  2. Bang, H.W., W.C. Lee, S.H. Lee, and I.S. Gwak, 2008. Life cycle, morphology and gene expression of harpacticoid copepod, Tigriopus japonicus s.l. exposed to 4-nonylphenol. Korean J. Limnol., 41(1): 81-89.
  3. Bang, H.W., W.C. Lee, and I.S. Gwak, 2008. Ecotoxicological response of offspring from Tigriopus japonicus s.l. parents exposure to 4-nonylphenol. Korean J. Limnol., 41(1): 90-97.
  4. Bruner, K.A., S.W. Fisher, and P.F. Landrum, 1994. The role of the Zebra Mussel, Dreissena polymorha, in contaminant cycling: I. The effect of body size and lipid content on the bioconcentration of PCBs and PAHs. J. Great Lakes Res., 20(4): 725-734. https://doi.org/10.1016/S0380-1330(94)71190-4
  5. Cho, N.G., Y.G. Jin, C.W. Lee, H.M. Kim, K.H. Choi, K.H. Chung, J.C. Kang, and J.S. Lee, 2007. Change of reproductive indicator of the crucian carp, Carassius auratus(Teleostei:Cyprinidae) longterm exposed to nonylphenol. J. Environ. Toxicol., 22(3): 235-245.
  6. Choi, M.K., Y.S. Park, H.B. Moon, J. Yu and H.G. Choi, 2010. Distribution of fecal sterols, nonylphenol, and polycyclic aromatic hydrocarbons in surface water from Masan bay, Korea. Fish Aqua Sci., 13(3): 236-243. https://doi.org/10.5657/fas.2010.13.3.236
  7. Choi, M.K., S.G. Kim, S.P. Yoon, R.H. Jung, H.B. Moon, J. Yu, and H.G. Choi, 2010. Sediment toxicity of industrialized coastal areas of korea using bioluminescent marine bacteria fish. Aquat. Sci., 13(3): 244-253. https://doi.org/10.5657/fas.2010.13.3.244
  8. Chung, E.Y., Y.K. Shin, and S.B. Hur, 1999. Physiological rhythms in the oxygen consumption and filtration rates of the Manila Clam, Ruditapes philippinarum. Korean J. Malacology, 15: 127-131.
  9. Ekelund, R., A. Bergman, A. Granmo, and M. Berggren, 1990. Bio-accumulation of 4-nonylphenol in marine animals. A re-evaluation. Environ. Pollut., 64: 107-120. https://doi.org/10.1016/0269-7491(90)90108-O
  10. Fan, C.W. and J.R. Reinfelder, 2003. Phenanthrene accumulation kinetics in marine diatoms. Environ. Sci. Technol., 37: 3405-3412. https://doi.org/10.1021/es026367g
  11. Filgueira, R., U. Labarta, and M.J. Fernandez-Reiriz, 2008. Effect of condition index on allometric relationships of clearance rate in Mytilus galloprovincialis Lamarck, 1819. Rev. Biol. Mar. Oceanog., 43(2): 391-398.
  12. Gatidoua, G., E. Vassaloua, and N.S. Thomaidisb, 2010. Bioconcentration of selected endocrine disrupting compounds in the Mediterranean mussel, Mytilus galloprovincialis. Mar. Pollut. Bull. 60(11): 2111-2116. https://doi.org/10.1016/j.marpolbul.2010.07.003
  13. Giger, W., P.H. Brunner, and C. Schaffner, 1984. 4-Nonylphenol in sewage sludge: accumulation of toxic metabolites from non-ionic surfactants. Science, 225: 623-625. https://doi.org/10.1126/science.6740328
  14. Gilek, M., M. Bjork, and C. Naf, 1996. Influence of body size on the uptake, depuration and bioaccumulation of polychlorinated biphenyl congeners by Baltic Sea blue mussels, Mytilus edulis. Marine Biology, 125: 499-510.
  15. Heinonen, J., J.O. Honkanen, J.V.K. Kukkonen, I.J. Holopainen, 2002. Bisphenol A Accumulation in the Freshwater Clam Pisidium amnicum at Low Temperatures. Arch. Environ. Contam. Toxicol. 43: 50-55. https://doi.org/10.1007/s00244-002-1146-y
  16. Honkanen, J.O., J. Heinonen, and J.V.K. Kukkonen, 2001. Toxicokinetics of waterborne bisphenol A in landlocked salmon (Salmo salarm. sebago) eggs at various temperatures. Environ. Toxicol. Chem., 20(10): 2296-2302. https://doi.org/10.1002/etc.5620201023
  17. Hwang, I.J., H.B. Kim, and H.J. Baek, 2008. Effects of bisphenol A and nonylphenol on in vitro steroid production in matured oocyte of greenlings, Hexagrammos agrammus. Dev. Reprod. Vol., 12(3): 275-281.
  18. Ji, J., H.J. Choi, and I.Y. Ahn, 2006. Evaluation of Manila clam Ruditapes philippinarum as a sentinel species for metal pollution monitoring in estuarine tidal flats of Korea: Effects of size, sex, and spawning on baseline accumulation. Mar. Pollu. Bull., 52: 447-468. https://doi.org/10.1016/j.marpolbul.2005.12.012
  19. Jin, Y.G., C.H. Kim, C.W. Lee, and J.S. Lee, 2008. Survival rate, growth and NP accumulation of the striped bitterling, Acheilognathus yamatsutae long-term exposed to nonylphenol (NP). J. Fish Pathol, 21(1): 57-66.
  20. Johns, H.D., O.G. Richards, and T.A. Southern, 1992. Gill dimensions, water pumping rate and body size in the mussel Mytilus edulis. L. J. Exp. Mar. Biol. Ecol., 155: 213-237. https://doi.org/10.1016/0022-0981(92)90064-H
  21. Jorgensen, C.B., R.S. Larsen, and H.U. Riisgard, 1990. Effect of temperature on the mussel pump. Mar. Ecol. Prog. Ser., 64: 89-97. https://doi.org/10.3354/meps064089
  22. Kang, I.J., H. Yokota, Y. Oshima, Y. Tsuruda, T. Hano, M. Maeda, N. Imada, H. Tadokoro, and T. Honjo, 2003. Effects of 4-nonylphenol on reproduction of japanese medaka, Oryzias latipes. Environ. Toxicol. Chem. 22(10): 2438-2445. https://doi.org/10.1897/02-225
  23. Langston, W.J. and S.K. Spence, 1995. Biological factors involved in metal concentrations observed in aquatic organisms. In: Metal Speciation and Bioavailability in Aquatic System (ed. by Tessier A. and Turner D.R.). John Wiley & Sons, Chichester, UK, pp 407-478.
  24. Lee, J.S. and J.J. Park, 2007. Risk assessment of nonylphenol using sex ratio, sexual maturation, intersex and lipofuscin accumulation of the equilateral venus Gomphina veneriformis (Bivalvia: Veneridae). J. Kor. Fish. Soc., 40(1): 16-23. https://doi.org/10.5657/kfas.2007.40.1.016
  25. Lee, B.G., W.G. Wallace, and S.N. Louma, 1998. Uptake and loss kinetic of Cd, Cr and Zn in the bivalves Potamocorbula amurenssis and Macoma balthica: effect of size and salinity. Mar. Ecol. Prog. Ser., 175: 177-189. https://doi.org/10.3354/meps175177
  26. Lee, C.H. and E.Y. Chung, 2001. Determination of experimental conditions for measurement of the clearance rate of an intertidal bivalve, Glauconome chinensis. Korean J. Malacology, 17: 95-104.
  27. Lee, J.S. and B.G. Lee, 2005. Relationship between clearance rates and metal uptake rates of Corbicula fluminea, Potamocorbula amurensis and Macoma balthica: influence of water temperature and body size. Korean J. Malacology, 21: 41-46.
  28. Lee, W.S., M.K. Choi, D.W. Hwang, I.S. Lee, and S.Y. Kim, 2012. Chemical contamination and toxicity of sediments from the gunsan coast, Korea. Fish. Aquat. Sci., 15(3): 241-250. https://doi.org/10.5657/FAS.2012.0241
  29. Lei, A.P., Y.S. Wong, and N.F.Y. Tam, 2002. Removal of pyrene by different microalgal species. Water. Sci. Technol., 46: 195-201.
  30. Li, D.H., M.S. Kim, W.J. Shim, U.H. Yim, S.H. Hong, and J.R. Oh, 2004. Distribution of nonylphenol in Gwangyang bay and the surrounding streams. Korean J. Environ. Biol., 22: 71-77.
  31. Lietti, E., M.G. Marin, V. Matozzo, S. Polesello, and S. Valsecchi, 2007. Uptake and elimination of 4-Nonylphenol by the clam Tapes philippinarum. Arch. Environ. Contam. Toxicol., 53:571-578. https://doi.org/10.1007/s00244-006-0250-9
  32. Lim, K.H., H.C. Shin, and J.S. Yang, 2005. The influence of water temperature and food concentration on the filtration rates of the Asiatic clam, Corbicula fluminea. Korean J. Malacology, 21: 19-24.
  33. Matozzo, V., M. Deppieri, M. Moschino, and M.G. Marin, 2003. Evaluation of 4-nonylphenol toxicity in the clam Tapes philippinarum. Environ. Res., 91: 179-185. https://doi.org/10.1016/S0013-9351(02)00052-X
  34. Mohlenberg, F. and H.U. Riisgard, 1978. Efficiency of particle retention in 13 species of suspension-feeding bivalves. Ophelia, 17: 139-246.
  35. O'Connor, T.P., 2002. National distribution of chemical concentration in mussels and oysters in the USA. Mar. Pollut. Bull., 53: 117-143.
  36. Park, J.S. and J.S. Lee, 2011. Change of reproductive and histological biomarkers of Ruditapes philippinarum (Bivalvia: Veneridae) exposed to nonylphenol. Korean J. Malacol. 27(3): 181-190. https://doi.org/10.9710/kjm.2011.27.3.181
  37. Podolsky, R.D., 1994. Temperature and water viscosity: physiological versus mechanical effect on suspension feeding. Science, 265:100-103. https://doi.org/10.1126/science.265.5168.100
  38. Reeders, H.H. and A.B. de Vaate, 1990. Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia, 200: 437-450.
  39. Renner, R., 1997. European bans on surfactant trigger transatlantic debate. Environ. Sci. Technol., 31(7): A316-A320. https://doi.org/10.1021/es972366q
  40. Riisgard, H.U., 2001. On measurement of filtration rates in bivalvesthe stony road to reliable data: review and interpretation. Mar. Ecol. Prog. Ser., 211: 275-291. https://doi.org/10.3354/meps211275
  41. Robinson, W.R., R.H. Peters, and J. Zimmermann, 1983. The effect of body size and temperature on metabolic rate of organisms. C. J. Zoology, 61: 281-288. https://doi.org/10.1139/z83-037
  42. Servos, M.R., 1999. Review of the aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenol and alkylphenol polyethoxylates. Water Qual. Res. J. Can., 34: 123-177.
  43. Shin, H.C. and K.H. Lim, 2003. The influence of water temperature and salinity on the filtration rates of the sohrt-necked clam, Ruditapes philippinarum. Korean J. Malacology, 19: 1-8.
  44. Snyder, S.A., T.L. Keith, S.L. Pierens, E.M. Snyder, and J.P. Giesy, 2001. Bioconcentration of nonylphenol in fathead minnows (Pimephales promelas). Chemosphere, 44(8): 1697-1702. https://doi.org/10.1016/S0045-6535(00)00524-5
  45. Sprung, M., 1995. Physiological energetics of the zebra mussel Dreissena polymorpha in lakes. II. Food uptake and gross growth efficiency. Hydrobiologia, 304: 133-146. https://doi.org/10.1007/BF02579418
  46. Strohmeier, T., O. Strand, and P. Cranford, 2009. Clearance rates of the great scallop (Pecten maximus) and blue mussel (Mytilus edulis) at low natural seston concentrations. Mar. Biol. 156: 1781-1795. https://doi.org/10.1007/s00227-009-1212-3
  47. Sylvester, F., J. Dorado, D. Boltovskoy, A. Juarez, and D. Cataldo, 2005. Filtration rates of the invasive pest bivalve Limnoperna fortunei as a function of size and temperature. Hydrobiologia, 524: 71-80.
  48. Tezuka, N., E. Ichisaki, M. Kanematsu, H. Usuki, M. Hamaguchi, and K. Iseki, 2009. Particle retention efficiency of asari clam Ruditapes philippinarum larvae. Aquat. Biol. 6: 281-287. https://doi.org/10.3354/ab00132
  49. Vidal, M.L., A. Basseres, and J.F. Narbonne, 2002. Influence of temperature, pH, oxygenation, water-type and substrate on biomarker responses in the freshwater clam Corbicula fluminea (Muller). Comp. Biochem. Physiol., 132C: 93-104.
  50. Wang, J.F., C.Y. Chuang, and W.X. Wang, 2005. Metal and oxygen uptake in the green mussel Perna viridis under different metabolic conditions. Environ. Toxicol. Chem., 24(10): 2657-2664. https://doi.org/10.1897/05-109R.1
  51. Wang, W.X. and A.T.S. Chow, 2002. Benzo[a]pyrene absorption and exposure pathways in the green mussel Perna viridis. Environ. Toxicol. Chem., 21: 451-458. https://doi.org/10.1002/etc.5620210231
  52. Wang, W.X., 2001. Comparison of metal uptake rate and absorption efficiency in marine bivalves. Environ. Toxicol. Chem., 20: 1367-1373. https://doi.org/10.1002/etc.5620200628
  53. Wang, W.X., N.S. Fisher, and S.N. Louma, 1996. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser., 140: 91-113. https://doi.org/10.3354/meps140091
  54. Wang, W.X. and N.S. Fisher, 1997. Modeling the influence of body size on trace element accumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser., 161: 103-115. https://doi.org/10.3354/meps161103
  55. Werner, I. and J.T. Hollibaugh, 1993. Potamocorbula amurensis: Comparison of clearance rates and assimilation efficiencies for phytoplankton and bacterioplankton. Limnol. Oceanogr., 38: 949-964. https://doi.org/10.4319/lo.1993.38.5.0949
  56. Widdow, J. 1985. Physiological procedures. In: The effects of stress and pollution on marine animals (Bayne B.L.Brown, D.A., Burns, K., Dixon, D.R. Ivaovici, A., Livingston, D.R. Lowe, D.M., Moore, M.N., Stedding, A.R.D., and Widdows, J. eds.). pp. 161-179. Praeger, New York.
  57. Wilson, J.G. and B. Elkaim, 1991. Tolerances to high temperature of infaunal bivalves and the effect of geographical distribution, position on the shore and season. J. Mar. Biol. Ass., 71: 169-177. https://doi.org/10.1017/S0025315400037486
  58. Ying, G.G., B. Williams, and R. Kookana, 2002. Environmental fate of alkylphenol ethoxylates - a review. Environment International, 28: 215-226. https://doi.org/10.1016/S0160-4120(02)00017-X

Cited by

  1. Clearance rate and feeding according to water temperature and salinity condition in the surf clam, Mactra veneriformis vol.30, pp.2, 2014, https://doi.org/10.9710/kjm.2014.30.2.101