Browse > Article
http://dx.doi.org/10.7850/jkso.2013.18.2.80

Relationship of the Clearance Rate and Nonylphenol Uptake Rate of Three Bivalve Species with Different Size Classes and Temperatures  

Yang, Songyi (Department of Oceanography, College of Natural Science, Chonnam National University)
Lee, Jong Hyeon (Neo Environmental Business Co.)
Lee, Byeong Gweon (Department of Oceanography, College of Natural Science, Chonnam National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.18, no.2, 2013 , pp. 80-88 More about this Journal
Abstract
The present study was conducted to evaluate relationship between nonylphenol uptake rate and clearance rate of Ruditapes philippinarum, Corbicula japonica and Mytilus edulis. Variation of the temperature and body size of the bivalves was used to modulate clearance rate and nonylphenol uptake rate in this experiment. Clearance rate and nonylphenol uptake rate experiments were determined for two different size classes of the bivalves (R. philippinarum: 0.35, 0.73 g, C. japonica : 0.047, 0.1000g, M. edulis: 0.30, 0.37 g; mean flesh dry weight) and three different temperature regime (5, 13 and $18^{\circ}C$). Weight-specific clearance rate in all animal size and temperature ranges increased in the order of R. philippinarum, C. japonica and M. edulis. The weight-specific nonylphenol uptake rate did not show specific trend among species. The clearance rate and nonylphenol uptake rate generally decreased with animal size and increased with water temperature. For all three species nonylphenol uptake rate had a strong relationship with clearance rate. For a given clearance rate ranges, the nonylphenol uptake rate was in the order of R. philippinarum > C. japonica > M. edulis. The results suggest that water ventilation capacity of filter-feeding organisms is an important physiological factor controlling uptake rate of dissolved nonylphenol.
Keywords
Bivalve; Clearance rate; Nonylphenol; Uptake rate; Temperature;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
연도 인용수 순위
1 Shin, H.C. and K.H. Lim, 2003. The influence of water temperature and salinity on the filtration rates of the sohrt-necked clam, Ruditapes philippinarum. Korean J. Malacology, 19: 1-8.   과학기술학회마을
2 Wang, W.X. and A.T.S. Chow, 2002. Benzo[a]pyrene absorption and exposure pathways in the green mussel Perna viridis. Environ. Toxicol. Chem., 21: 451-458.   DOI
3 Wang, W.X., 2001. Comparison of metal uptake rate and absorption efficiency in marine bivalves. Environ. Toxicol. Chem., 20: 1367-1373.   DOI   ScienceOn
4 Wang, W.X., N.S. Fisher, and S.N. Louma, 1996. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser., 140: 91-113.   DOI   ScienceOn
5 Wang, W.X. and N.S. Fisher, 1997. Modeling the influence of body size on trace element accumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser., 161: 103-115.   DOI
6 Werner, I. and J.T. Hollibaugh, 1993. Potamocorbula amurensis: Comparison of clearance rates and assimilation efficiencies for phytoplankton and bacterioplankton. Limnol. Oceanogr., 38: 949-964.   DOI   ScienceOn
7 Widdow, J. 1985. Physiological procedures. In: The effects of stress and pollution on marine animals (Bayne B.L.Brown, D.A., Burns, K., Dixon, D.R. Ivaovici, A., Livingston, D.R. Lowe, D.M., Moore, M.N., Stedding, A.R.D., and Widdows, J. eds.). pp. 161-179. Praeger, New York.
8 Wilson, J.G. and B. Elkaim, 1991. Tolerances to high temperature of infaunal bivalves and the effect of geographical distribution, position on the shore and season. J. Mar. Biol. Ass., 71: 169-177.   DOI
9 Ying, G.G., B. Williams, and R. Kookana, 2002. Environmental fate of alkylphenol ethoxylates - a review. Environment International, 28: 215-226.   DOI   ScienceOn
10 Lietti, E., M.G. Marin, V. Matozzo, S. Polesello, and S. Valsecchi, 2007. Uptake and elimination of 4-Nonylphenol by the clam Tapes philippinarum. Arch. Environ. Contam. Toxicol., 53:571-578.   DOI
11 Lim, K.H., H.C. Shin, and J.S. Yang, 2005. The influence of water temperature and food concentration on the filtration rates of the Asiatic clam, Corbicula fluminea. Korean J. Malacology, 21: 19-24.   과학기술학회마을
12 O'Connor, T.P., 2002. National distribution of chemical concentration in mussels and oysters in the USA. Mar. Pollut. Bull., 53: 117-143.
13 Tezuka, N., E. Ichisaki, M. Kanematsu, H. Usuki, M. Hamaguchi, and K. Iseki, 2009. Particle retention efficiency of asari clam Ruditapes philippinarum larvae. Aquat. Biol. 6: 281-287.   DOI
14 Vidal, M.L., A. Basseres, and J.F. Narbonne, 2002. Influence of temperature, pH, oxygenation, water-type and substrate on biomarker responses in the freshwater clam Corbicula fluminea (Muller). Comp. Biochem. Physiol., 132C: 93-104.
15 Wang, J.F., C.Y. Chuang, and W.X. Wang, 2005. Metal and oxygen uptake in the green mussel Perna viridis under different metabolic conditions. Environ. Toxicol. Chem., 24(10): 2657-2664.   DOI   ScienceOn
16 Matozzo, V., M. Deppieri, M. Moschino, and M.G. Marin, 2003. Evaluation of 4-nonylphenol toxicity in the clam Tapes philippinarum. Environ. Res., 91: 179-185.   DOI   ScienceOn
17 Mohlenberg, F. and H.U. Riisgard, 1978. Efficiency of particle retention in 13 species of suspension-feeding bivalves. Ophelia, 17: 139-246.
18 Park, J.S. and J.S. Lee, 2011. Change of reproductive and histological biomarkers of Ruditapes philippinarum (Bivalvia: Veneridae) exposed to nonylphenol. Korean J. Malacol. 27(3): 181-190.   과학기술학회마을   DOI   ScienceOn
19 Podolsky, R.D., 1994. Temperature and water viscosity: physiological versus mechanical effect on suspension feeding. Science, 265:100-103.   DOI   ScienceOn
20 Reeders, H.H. and A.B. de Vaate, 1990. Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia, 200: 437-450.
21 Renner, R., 1997. European bans on surfactant trigger transatlantic debate. Environ. Sci. Technol., 31(7): A316-A320.   DOI   ScienceOn
22 Riisgard, H.U., 2001. On measurement of filtration rates in bivalvesthe stony road to reliable data: review and interpretation. Mar. Ecol. Prog. Ser., 211: 275-291.   DOI
23 Robinson, W.R., R.H. Peters, and J. Zimmermann, 1983. The effect of body size and temperature on metabolic rate of organisms. C. J. Zoology, 61: 281-288.   DOI
24 Servos, M.R., 1999. Review of the aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenol and alkylphenol polyethoxylates. Water Qual. Res. J. Can., 34: 123-177.
25 Chung, E.Y., Y.K. Shin, and S.B. Hur, 1999. Physiological rhythms in the oxygen consumption and filtration rates of the Manila Clam, Ruditapes philippinarum. Korean J. Malacology, 15: 127-131.   과학기술학회마을
26 Cho, N.G., Y.G. Jin, C.W. Lee, H.M. Kim, K.H. Choi, K.H. Chung, J.C. Kang, and J.S. Lee, 2007. Change of reproductive indicator of the crucian carp, Carassius auratus(Teleostei:Cyprinidae) longterm exposed to nonylphenol. J. Environ. Toxicol., 22(3): 235-245.   과학기술학회마을
27 Choi, M.K., Y.S. Park, H.B. Moon, J. Yu and H.G. Choi, 2010. Distribution of fecal sterols, nonylphenol, and polycyclic aromatic hydrocarbons in surface water from Masan bay, Korea. Fish Aqua Sci., 13(3): 236-243.   과학기술학회마을   DOI   ScienceOn
28 Choi, M.K., S.G. Kim, S.P. Yoon, R.H. Jung, H.B. Moon, J. Yu, and H.G. Choi, 2010. Sediment toxicity of industrialized coastal areas of korea using bioluminescent marine bacteria fish. Aquat. Sci., 13(3): 244-253.   과학기술학회마을   DOI   ScienceOn
29 Ekelund, R., A. Bergman, A. Granmo, and M. Berggren, 1990. Bio-accumulation of 4-nonylphenol in marine animals. A re-evaluation. Environ. Pollut., 64: 107-120.   DOI   ScienceOn
30 Fan, C.W. and J.R. Reinfelder, 2003. Phenanthrene accumulation kinetics in marine diatoms. Environ. Sci. Technol., 37: 3405-3412.   DOI   ScienceOn
31 Kang, I.J., H. Yokota, Y. Oshima, Y. Tsuruda, T. Hano, M. Maeda, N. Imada, H. Tadokoro, and T. Honjo, 2003. Effects of 4-nonylphenol on reproduction of japanese medaka, Oryzias latipes. Environ. Toxicol. Chem. 22(10): 2438-2445.   DOI   ScienceOn
32 Langston, W.J. and S.K. Spence, 1995. Biological factors involved in metal concentrations observed in aquatic organisms. In: Metal Speciation and Bioavailability in Aquatic System (ed. by Tessier A. and Turner D.R.). John Wiley & Sons, Chichester, UK, pp 407-478.
33 Lee, J.S. and B.G. Lee, 2005. Relationship between clearance rates and metal uptake rates of Corbicula fluminea, Potamocorbula amurensis and Macoma balthica: influence of water temperature and body size. Korean J. Malacology, 21: 41-46.   과학기술학회마을
34 Lee, J.S. and J.J. Park, 2007. Risk assessment of nonylphenol using sex ratio, sexual maturation, intersex and lipofuscin accumulation of the equilateral venus Gomphina veneriformis (Bivalvia: Veneridae). J. Kor. Fish. Soc., 40(1): 16-23.   과학기술학회마을   DOI   ScienceOn
35 Lee, B.G., W.G. Wallace, and S.N. Louma, 1998. Uptake and loss kinetic of Cd, Cr and Zn in the bivalves Potamocorbula amurenssis and Macoma balthica: effect of size and salinity. Mar. Ecol. Prog. Ser., 175: 177-189.   DOI
36 Lee, C.H. and E.Y. Chung, 2001. Determination of experimental conditions for measurement of the clearance rate of an intertidal bivalve, Glauconome chinensis. Korean J. Malacology, 17: 95-104.   과학기술학회마을
37 Lee, W.S., M.K. Choi, D.W. Hwang, I.S. Lee, and S.Y. Kim, 2012. Chemical contamination and toxicity of sediments from the gunsan coast, Korea. Fish. Aquat. Sci., 15(3): 241-250.   과학기술학회마을   DOI   ScienceOn
38 Lei, A.P., Y.S. Wong, and N.F.Y. Tam, 2002. Removal of pyrene by different microalgal species. Water. Sci. Technol., 46: 195-201.
39 Sprung, M., 1995. Physiological energetics of the zebra mussel Dreissena polymorpha in lakes. II. Food uptake and gross growth efficiency. Hydrobiologia, 304: 133-146.   DOI
40 Snyder, S.A., T.L. Keith, S.L. Pierens, E.M. Snyder, and J.P. Giesy, 2001. Bioconcentration of nonylphenol in fathead minnows (Pimephales promelas). Chemosphere, 44(8): 1697-1702.   DOI   ScienceOn
41 Strohmeier, T., O. Strand, and P. Cranford, 2009. Clearance rates of the great scallop (Pecten maximus) and blue mussel (Mytilus edulis) at low natural seston concentrations. Mar. Biol. 156: 1781-1795.   DOI
42 Sylvester, F., J. Dorado, D. Boltovskoy, A. Juarez, and D. Cataldo, 2005. Filtration rates of the invasive pest bivalve Limnoperna fortunei as a function of size and temperature. Hydrobiologia, 524: 71-80.
43 Hwang, I.J., H.B. Kim, and H.J. Baek, 2008. Effects of bisphenol A and nonylphenol on in vitro steroid production in matured oocyte of greenlings, Hexagrammos agrammus. Dev. Reprod. Vol., 12(3): 275-281.   과학기술학회마을
44 Ji, J., H.J. Choi, and I.Y. Ahn, 2006. Evaluation of Manila clam Ruditapes philippinarum as a sentinel species for metal pollution monitoring in estuarine tidal flats of Korea: Effects of size, sex, and spawning on baseline accumulation. Mar. Pollu. Bull., 52: 447-468.   DOI   ScienceOn
45 Jin, Y.G., C.H. Kim, C.W. Lee, and J.S. Lee, 2008. Survival rate, growth and NP accumulation of the striped bitterling, Acheilognathus yamatsutae long-term exposed to nonylphenol (NP). J. Fish Pathol, 21(1): 57-66.   과학기술학회마을
46 Johns, H.D., O.G. Richards, and T.A. Southern, 1992. Gill dimensions, water pumping rate and body size in the mussel Mytilus edulis. L. J. Exp. Mar. Biol. Ecol., 155: 213-237.   DOI   ScienceOn
47 Jorgensen, C.B., R.S. Larsen, and H.U. Riisgard, 1990. Effect of temperature on the mussel pump. Mar. Ecol. Prog. Ser., 64: 89-97.   DOI
48 Giger, W., P.H. Brunner, and C. Schaffner, 1984. 4-Nonylphenol in sewage sludge: accumulation of toxic metabolites from non-ionic surfactants. Science, 225: 623-625.   DOI
49 Filgueira, R., U. Labarta, and M.J. Fernandez-Reiriz, 2008. Effect of condition index on allometric relationships of clearance rate in Mytilus galloprovincialis Lamarck, 1819. Rev. Biol. Mar. Oceanog., 43(2): 391-398.
50 Gatidoua, G., E. Vassaloua, and N.S. Thomaidisb, 2010. Bioconcentration of selected endocrine disrupting compounds in the Mediterranean mussel, Mytilus galloprovincialis. Mar. Pollut. Bull. 60(11): 2111-2116.   DOI   ScienceOn
51 Gilek, M., M. Bjork, and C. Naf, 1996. Influence of body size on the uptake, depuration and bioaccumulation of polychlorinated biphenyl congeners by Baltic Sea blue mussels, Mytilus edulis. Marine Biology, 125: 499-510.
52 Bang, H.W., W.C. Lee, S.H. Lee, and I.S. Gwak, 2008. Life cycle, morphology and gene expression of harpacticoid copepod, Tigriopus japonicus s.l. exposed to 4-nonylphenol. Korean J. Limnol., 41(1): 81-89.   과학기술학회마을
53 Heinonen, J., J.O. Honkanen, J.V.K. Kukkonen, I.J. Holopainen, 2002. Bisphenol A Accumulation in the Freshwater Clam Pisidium amnicum at Low Temperatures. Arch. Environ. Contam. Toxicol. 43: 50-55.   DOI   ScienceOn
54 Honkanen, J.O., J. Heinonen, and J.V.K. Kukkonen, 2001. Toxicokinetics of waterborne bisphenol A in landlocked salmon (Salmo salarm. sebago) eggs at various temperatures. Environ. Toxicol. Chem., 20(10): 2296-2302.   DOI
55 Ahel, M. and W. Giger, 1993. Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere, 26: 1471-1478.   DOI   ScienceOn
56 Li, D.H., M.S. Kim, W.J. Shim, U.H. Yim, S.H. Hong, and J.R. Oh, 2004. Distribution of nonylphenol in Gwangyang bay and the surrounding streams. Korean J. Environ. Biol., 22: 71-77.   과학기술학회마을
57 Bang, H.W., W.C. Lee, and I.S. Gwak, 2008. Ecotoxicological response of offspring from Tigriopus japonicus s.l. parents exposure to 4-nonylphenol. Korean J. Limnol., 41(1): 90-97.   과학기술학회마을
58 Bruner, K.A., S.W. Fisher, and P.F. Landrum, 1994. The role of the Zebra Mussel, Dreissena polymorha, in contaminant cycling: I. The effect of body size and lipid content on the bioconcentration of PCBs and PAHs. J. Great Lakes Res., 20(4): 725-734.   DOI