References
- N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett. 82 (1999), 2661-2664. https://doi.org/10.1103/PhysRevLett.82.2661
- C. O. Alves, Local mountain pass for a class of elliptic system, J. Math. Anal. Appl. 335 (2007), no. 1, 135-150. https://doi.org/10.1016/j.jmaa.2007.01.062
- C. O. Alves and S. H. M. Soares, Existence and concentration of positive solutions for a class gradient systems, Nonlinear Differential Equations Appl. 12 (2005), no. 4, 437-457.
- A. Ambrosetti, V. Felli, and A. Malchiodi, Ground states of nonlinear Schrodinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. 7 (2005), no. 1, 117-144.
-
A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on
${\mathbb{R}}^N$ , Progr. Math., Birkhauser 240, Boston, 2006. - A. Ambrosetti, A. Malchiodi, and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, I, Comm. Math. Phys. 235 (2003), no. 3, 427-466. https://doi.org/10.1007/s00220-003-0811-y
- A. Ambrosetti, A. Malchiodi, and D. Ruiz, Bound states of nonlinear Schrodinger equations with potentials vanishing at infinity, J. Anal. Math. 98 (2006), 317-348. https://doi.org/10.1007/BF02790279
- A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
- A. Ambrosetti and D. Ruiz, Radial solutions concentrating on spheres of nonlinear Schrodinger equations with vanishing potentials, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 5, 889-907. https://doi.org/10.1017/S0308210500004789
- A. Ambrosetti and Z.-Q. Wang, Nonlinear Schrodinger equations with vanishing and decaying potentials, Differential Integral Equations 18 (2005), no. 12, 1321-1332.
- M. Badiale, V. Benci, and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc. 9 (2007), no. 3, 355-381.
- M. Badiale and T. d'Aprile, Concentration around a sphere for a singularly perturbed Schrodinger equation, Nonlinear Anal. 49 (2002), no. 7, Ser. A: Theory Methods, 947-985. https://doi.org/10.1016/S0362-546X(01)00717-9
- T. Bartsch and S. Peng, Semiclassical symmetric Schrodinger equations: Existence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys. 58 (2007), no. 5, 778-804. https://doi.org/10.1007/s00033-006-5111-x
- J. Byeon, Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli, J. Differential Equations 136 (1997), no. 1, 136-165. https://doi.org/10.1006/jdeq.1996.3241
- J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrodinger equations with a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007), no. 2, 185-200. https://doi.org/10.1007/s00205-006-0019-3
- J. Byeon and Z.-Q. Wang, Spherical semiclassical states of a critical frequency for Schrodinger equations with decaying potentials, J. Eur. Math. Soc. 8 (2006), no. 2, 217-228.
- J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrodinger equations, Arch. Ration. Mech. Anal. 165 (2002), no. 4, 295-316. https://doi.org/10.1007/s00205-002-0225-6
- J. Byeon and Z.-Q. Wang, Standing waves for nonlinear Schrodinger equations with singular potentials, Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), no. 3, 943-958. https://doi.org/10.1016/j.anihpc.2008.03.009
- J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrodinger equations. II, Calc. Var. Partial Differential Equations 18 (2003), no. 2, 207-219. https://doi.org/10.1007/s00526-002-0191-8
- D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, Theory of incoherent self-focusing in biased photorefractive media, Phys. Rev. Lett. 78 (1997), 646-649. https://doi.org/10.1103/PhysRevLett.78.646
-
R. Cipolatti and W. Zumpichiatti, On the existence and regularity of ground states for a nonlinear system of coupled Schrodinger equations in
${\mathbb{R}}^N$ , Comput. Appl. Math. 18 (1999), no. 1, 15-29. - R. Cipolatti and W. Zumpichiatti, Orbitally stable standing waves for a system of coupled nonlinear Schrodinger equations, Nonlinear Anal. 42 (2000), no. 3, Ser. A: Theory Methods, 445-461. https://doi.org/10.1016/S0362-546X(98)00357-5
- E. N. Dancer and S. Yan, A new type of concentration solutions for a singularly perturbed elliptic problem, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1765-1790.
- A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential, J. Funct. Anal. 69 (1986), no. 3, 397-408. https://doi.org/10.1016/0022-1236(86)90096-0
- B. D. Esry, C. H. Greene, J. P. Burke, Jr., and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997), 3594-3597. https://doi.org/10.1103/PhysRevLett.78.3594
- D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren Math. 224, Springer-Verlag, Berlin Heidelberg, 1983.
- A. Hasegawa and Y. Kodama, Solitions in Optical Communications, Academic Press, San Diego, 1995.
- M. N. Islam, Ultrafast Fiber Switching Devices and Systems, Cambridge University Press, New York, 1992.
- I. P. Kaminow, Polarization in optical fibers, IEEE J. Quantum Electron. 17 (1981), 15-22. https://doi.org/10.1109/JQE.1981.1070626
- E. H. Lieb and R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases, Phys. Rev. Lett. 88 (2002), 170409. https://doi.org/10.1103/PhysRevLett.88.170409
- L. A. Maia, E. Montefusco, and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrodinger system, J. Differential Equations 229 (2006), no. 2, 743-767. https://doi.org/10.1016/j.jde.2006.07.002
- C. R. Menyuk, Nonlinear pulse propagation in birefringence optical fiber, IEEE J. Quantum Electron. 23 (1987), 174-176. https://doi.org/10.1109/JQE.1987.1073308
- C. R. Menyuk, Pulse propagation in an elliptically birefringent Kerr medium, IEEE J. Quantum Electron. 25 (1989), 2674-2682. https://doi.org/10.1109/3.40656
- P. Meystre, Atom Optics, Springer-Verlag, New York, 2001.
- D. L. Mills, Nonlinear Optics, Springer-Verlag, Berlin, 1998.
- D. C. de Morais Filho and M. A. S. Souto, Systems of p-laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1537-1553. https://doi.org/10.1080/03605309908821473
- A. Pomponio, Coupled nonlinear Schrodinger systems with potentials, J. Differential Equations 227 (2006), no. 1, 258-281. https://doi.org/10.1016/j.jde.2005.09.002