Browse > Article
http://dx.doi.org/10.4134/BKMS.2013.50.3.839

POSITIVE RADIAL SOLUTIONS FOR A CLASS OF ELLIPTIC SYSTEMS CONCENTRATING ON SPHERES WITH POTENTIAL DECAY  

Carriao, Paulo Cesar (Departamento de Matematica Universidade Federal de Minas Gerais)
Lisboa, Narciso Horta (Departamento de Ciencias Exatas Universidade Estadual de Montes Claros)
Miyagaki, Olimpio Hiroshi (Departamento de Matematica Universidade Federal de Juiz de Fora)
Publication Information
Bulletin of the Korean Mathematical Society / v.50, no.3, 2013 , pp. 839-865 More about this Journal
Abstract
We deal with the existence of positive radial solutions concentrating on spheres for the following class of elliptic system $$\large(S) \hfill{400} \{\array{-{\varepsilon}^2{\Delta}u+V_1(x)u=K(x)Q_u(u,v)\;in\;\mathbb{R}^N,\\-{\varepsilon}^2{\Delta}v+V_2(x)v=K(x)Q_v(u,v)\;in\;\mathbb{R}^N,\\u,v{\in}W^{1,2}(\mathbb{R}^N),\;u,v&gt;0\;in\;\mathbb{R}^N,}$$ where ${\varepsilon}$ is a small positive parameter; $V_1$, $V_2{\in}C^0(\mathbb{R}^N,[0,{\infty}))$ and $K{\in}C^0(\mathbb{R}^N,[0,{\infty}))$ are radially symmetric potentials; Q is a $(p+1)$-homogeneous function and p is subcritical, that is, 1 < $p$ < $2^*-1$, where $2^*=2N/(N-2)$ is the critical Sobolev exponent for $N{\geq}3$.
Keywords
Schr$\ddot{o}$dinger operator; radial solution; variational method; singular perturbation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, Theory of incoherent self-focusing in biased photorefractive media, Phys. Rev. Lett. 78 (1997), 646-649.   DOI   ScienceOn
2 R. Cipolatti and W. Zumpichiatti, On the existence and regularity of ground states for a nonlinear system of coupled Schrodinger equations in ${\mathbb{R}}^N$, Comput. Appl. Math. 18 (1999), no. 1, 15-29.
3 R. Cipolatti and W. Zumpichiatti, Orbitally stable standing waves for a system of coupled nonlinear Schrodinger equations, Nonlinear Anal. 42 (2000), no. 3, Ser. A: Theory Methods, 445-461.   DOI   ScienceOn
4 E. N. Dancer and S. Yan, A new type of concentration solutions for a singularly perturbed elliptic problem, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1765-1790.
5 N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett. 82 (1999), 2661-2664.   DOI   ScienceOn
6 C. O. Alves, Local mountain pass for a class of elliptic system, J. Math. Anal. Appl. 335 (2007), no. 1, 135-150.   DOI   ScienceOn
7 C. O. Alves and S. H. M. Soares, Existence and concentration of positive solutions for a class gradient systems, Nonlinear Differential Equations Appl. 12 (2005), no. 4, 437-457.
8 A. Ambrosetti, V. Felli, and A. Malchiodi, Ground states of nonlinear Schrodinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. 7 (2005), no. 1, 117-144.
9 A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on ${\mathbb{R}}^N$, Progr. Math., Birkhauser 240, Boston, 2006.
10 A. Ambrosetti, A. Malchiodi, and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, I, Comm. Math. Phys. 235 (2003), no. 3, 427-466.   DOI
11 A. Ambrosetti, A. Malchiodi, and D. Ruiz, Bound states of nonlinear Schrodinger equations with potentials vanishing at infinity, J. Anal. Math. 98 (2006), 317-348.   DOI
12 A. Ambrosetti and Z.-Q. Wang, Nonlinear Schrodinger equations with vanishing and decaying potentials, Differential Integral Equations 18 (2005), no. 12, 1321-1332.
13 M. Badiale, V. Benci, and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc. 9 (2007), no. 3, 355-381.
14 M. Badiale and T. d'Aprile, Concentration around a sphere for a singularly perturbed Schrodinger equation, Nonlinear Anal. 49 (2002), no. 7, Ser. A: Theory Methods, 947-985.   DOI   ScienceOn
15 T. Bartsch and S. Peng, Semiclassical symmetric Schrodinger equations: Existence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys. 58 (2007), no. 5, 778-804.   DOI
16 J. Byeon, Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli, J. Differential Equations 136 (1997), no. 1, 136-165.   DOI   ScienceOn
17 J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrodinger equations with a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007), no. 2, 185-200.   DOI
18 J. Byeon and Z.-Q. Wang, Spherical semiclassical states of a critical frequency for Schrodinger equations with decaying potentials, J. Eur. Math. Soc. 8 (2006), no. 2, 217-228.
19 J. Byeon and Z.-Q. Wang, Standing waves for nonlinear Schrodinger equations with singular potentials, Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), no. 3, 943-958.   DOI   ScienceOn
20 J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrodinger equations, Arch. Ration. Mech. Anal. 165 (2002), no. 4, 295-316.   DOI   ScienceOn
21 J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrodinger equations. II, Calc. Var. Partial Differential Equations 18 (2003), no. 2, 207-219.   DOI
22 A. Hasegawa and Y. Kodama, Solitions in Optical Communications, Academic Press, San Diego, 1995.
23 M. N. Islam, Ultrafast Fiber Switching Devices and Systems, Cambridge University Press, New York, 1992.
24 I. P. Kaminow, Polarization in optical fibers, IEEE J. Quantum Electron. 17 (1981), 15-22.   DOI
25 E. H. Lieb and R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases, Phys. Rev. Lett. 88 (2002), 170409.   DOI   ScienceOn
26 L. A. Maia, E. Montefusco, and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrodinger system, J. Differential Equations 229 (2006), no. 2, 743-767.   DOI   ScienceOn
27 C. R. Menyuk, Nonlinear pulse propagation in birefringence optical fiber, IEEE J. Quantum Electron. 23 (1987), 174-176.   DOI
28 C. R. Menyuk, Pulse propagation in an elliptically birefringent Kerr medium, IEEE J. Quantum Electron. 25 (1989), 2674-2682.   DOI   ScienceOn
29 P. Meystre, Atom Optics, Springer-Verlag, New York, 2001.
30 D. L. Mills, Nonlinear Optics, Springer-Verlag, Berlin, 1998.
31 A. Ambrosetti and D. Ruiz, Radial solutions concentrating on spheres of nonlinear Schrodinger equations with vanishing potentials, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 5, 889-907.   DOI   ScienceOn
32 D. C. de Morais Filho and M. A. S. Souto, Systems of p-laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1537-1553.   DOI
33 A. Pomponio, Coupled nonlinear Schrodinger systems with potentials, J. Differential Equations 227 (2006), no. 1, 258-281.   DOI   ScienceOn
34 A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.   DOI
35 D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren Math. 224, Springer-Verlag, Berlin Heidelberg, 1983.
36 A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential, J. Funct. Anal. 69 (1986), no. 3, 397-408.   DOI
37 B. D. Esry, C. H. Greene, J. P. Burke, Jr., and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997), 3594-3597.   DOI   ScienceOn