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POSITIVE RADIAL SOLUTIONS FOR A CLASS OF

ELLIPTIC SYSTEMS CONCENTRATING ON SPHERES

WITH POTENTIAL DECAY

Paulo Cesar Carrião, Narciso Horta Lisboa,
and Olimpio Hiroshi Miyagaki

Abstract. We deal with the existence of positive radial solutions con-
centrating on spheres for the following class of elliptic system

(S)







−ε2∆u+ V1(x)u = K(x)Qu(u, v) in RN ,
−ε2∆v + V2(x)v = K(x)Qv(u, v) in RN ,

u, v ∈ W 1,2(RN ), u, v > 0 in RN ,

where ε is a small positive parameter; V1, V2 ∈ C0(RN , [0,∞)) and
K ∈ C0(RN , (0,∞)) are radially symmetric potentials; Q is a (p + 1)-
homogeneous function and p is subcritical, that is, 1 < p < 2∗ − 1, where
2∗ = 2N/(N − 2) is the critical Sobolev exponent for N ≥ 3.

1. Introduction

This work has been motivated by some papers appeared in recent years
concerning the Schrödinger equation

(NLS) i~
∂ψ

∂t
+

~
2

2
∆ψ − V (x)ψ +K(x) |ψ|p−1 ψ = 0, x ∈ R

N ,

where ~ denotes the Plank constant, i is the imaginary unit and p ∈ (1, N+2
N−2 ).

This equation appears in many fields of physic, in particular, when we describe
Bose-Einstein condensates (see [30] and [34]) and the propagation of light in
some nonlinear optical material (see [35]).

For application or motivation, we can cite also, for instance, [32, 33] where
are studied the evolution of two orthogonal pulse envelope in birefringent op-
tical fibers, see also [29]. System of type (S) is also important for industrial
applications in fiber communications systems [27, 28]. Finally we would to
recall that system of type (S) can describe other physical phenomena, such
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as Kerr-like photorefractive media in optics, (cf. [1, 20, 21, 22]), Hartree-Fock
theory for double condensate [25]. See [31] and [37] for more applications in
physical and chemical phenomenas.

Here we are concerned with the existence of standing waves (semiclassical
states) of the nonlinear Schrödinger equations for small ε, that is, solutions of
the form ψ(x, t) = exp(−iEt/ε)u(x). Notice that after a simple rescaling and
putting V (x) − E = V (x), ψ satisfies (NLS) if and only if u solve the elliptic
equation

(NLS)ε −ε2∆u+ V (x)u = K(x)up, u > 0, x ∈ R
N .

The most characteristic feature of (NLS)ε is that its solution uε concentrate
as ε → 0. When this concentration set is a single point (resp. finite points),
these solutions are called, in the literature, spike solution (resp. multi-bump
solutions). When the potential V > 0, beginning from the pioneering paper by
Floer and Weinstein [24], a great number of work has been devoted to study
spike or multi-bump solutions for (NLS)ε (see [5] and references there in).
Studying in this case (V > 0), Ambrosetti-Malchiodi-Ni in [6] constructed so-
lutions concentrating on spheres for (NLS)ε. Ambrosetti-Ruiz in [9] extended
this result to the case of decaying potentials. See also [4], [7], [10], [12], [13],
[15] and [23]. In the critical frequence, that means infRN V (x) = 0, spike so-
lutions have been constructed in [16], [17], [18] and [19], which concentrate on
the zero of the potential V as ε → 0. In those papers also are constructed
“small” solutions concentrating on spheres near zeroes of the potentials. On
the other hand, Alves [2] and Alves-Soares [3] studied, by using the Mountain
Pass Theorem due to Ambrosetti-Rabinowitz [8], the elliptic system (S), when
V1 and V2 are globally lower bounded away from zero. The authors showed
that the solution (uε, vε) concentrates around local minima of the potentials
V1 and V2.

Motivated by the above papers, we are going to construct solutions concen-
trating on spheres for a class of the elliptic system with decaying potentials,
where V1, V2 and K are radially symmetric potentials satisfying:

(V ) V1, V2 ∈ C0(RN , [0,∞)) are such that

lim inf
|x|→∞

|x|2 V (x) ≡ 4λ > 0,

where V (x)=min{V1(x), V2(x)} and the zero set of V , Z=
{

x∈R
N : V (x) = 0

}

is non-empty;
(K) K ∈ C0(RN , (0,∞)) is limited.
The function Q ∈ C1([0,+∞) × [0,+∞),R) is a homogeneous function of

degree p+ 1, with 1 < p < N+2
N−2 , N ≥ 3 and verify:

(Q1) There exists C > 0 such that
{

|Qu(u, v)| ≤ C(|u|p + |v|p), ∀u, v ≥ 0,
|Qv(u, v)| ≤ C(|u|p + |v|p), ∀u, v ≥ 0;
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(Q2) There exist η1,η2 > 0 such that

η1(|u|p+1
+ |v|p+1

) ≤ Q(u, v) ≤ η2(|u|p+1
+ |v|p+1

) ∀u, v > 0;

(Q3) Qu(0, 1), Qv(1, 0) > 0;
(Q4) Q(u, v) > 0 ∀u, v > 0;
(Q5) Qu(u, v), Qv(u, v) ≥ 0 ∀u, v ≥ 0.

Remark 1. (a) Since Q is a C1 homogeneous function of degree p + 1, then
(p + 1)Q(u, v) = uQu(u, v) + vQv(u, v) and ∇Q is a homogeneous function of
degree p.

(b) Note that the right hand side of (Q2) can be obtained from (Q1), (a)
and the Young inequality.

(c) These kind of hypotheses were introduced for instance in [2] and [36].
(d) Our prototype of Q is Q(u, v) = (au + bv)p+1, u, v ≥ 0 and a, b > 0.

Our main result is the following.

Theorem 1. Suppose that (Q1)-(Q5), (V ) and (K) hold. Let A ⊂ Z be an

isolated compact subset of Z such that 0 /∈ A and V1 ≡ V2 in A. Then for ε
sufficienthly small, (S) has a solution (uε, vε) ∈W 1,2(RN )×W 1,2(RN ), uε and
vε radially symmetric functions, such that

(1) lim
ε→0

‖uε‖L∞(RN ) = lim
ε→0

‖vε‖L∞(RN ) = 0

and

(2) lim inf
ε→0

ε−2/(p−1) ‖uε + vε‖L∞(RN ) > 0.

Moreover, for each δ > 0, there are constants C, c > 0 such that

(3) uε(x), vε(x) ≤ C exp(−c/ε) [1 + (|x| /2R0)
ωε ] ∀x ∈ R

N\A4δ,

where ωε ≡ − (N−2)+
√

(N−2)2+4λ/ε2

2 , Ad ≡
{

x ∈ R
N | d(x,A) ≤ d

}

and R0 is

a positive constant given by (V ).

The proof of Theorem 1 is made adapting closely arguments used in [16] and
[17], more exactly, the minimization techniques with two constraints in order
to construct the spike solutions concentrating on sphere near of the zeros of V1
and V2. Actually, one of the constraints represents a type of the penalization
of the nonlinearity. The proof of the decay estimate of the solution is slightly
different those made in [16] and [17]. Here, in our case, we use some ideas
in [11], as well as, those in [16] and [17], combining Moser iterations, classical
elliptic estimates and comparison principle we obtain the decay estimate of the
solutions desired.
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2. Proof of Theorem 1

First of all by a scaling we see that system (S) is equivalent to

(S̃)







−∆u+ V1(εx)u = K(εx)Qu(u, v) in R
N ,

−∆v + V2(εx)v = K(εx)Qv(u, v) in R
N ,

u, v ∈W 1,2(RN ), u, v > 0 in R
N .

Let A be the isolated compact subset of Z as assumed in the theorem.
We choose δ > 0 such that 0 /∈ A8δ, and A8δ ∩ (Z\A) = ∅, where Aδ ≡
{

x ∈ R
N | d(x,A) ≤ δ

}

. We define Aδε ≡
{

x ∈ R
N | εx ∈ Aδ

}

. Let C∞
0,rad(R

N )

be the class of radially symmetric functions in C∞
0 (RN ), where C∞

0 (RN ) is the
set of functions on C∞(RN ) with compact support. Let Eε the completion of
C∞

0,rad(R
N )× C∞

0,rad(R
N ) with respect to the norm

‖(u, v)‖ε =
(
∫

RN

[|∇u|2 + |∇v|2 + V1(εx)u
2 + V2(εx)v

2]dx

)1/2

.

We observe that Eε = EV1,ε×EV2,ε, whereEVi,ε is the completion of C∞
0,rad(R

N )

with the norm ‖u‖Vi,ε
=
(

∫

RN [|∇u|2 + Vi(εx)u
2]dx

)1/2

, i = 1, 2. Thus,

‖(u, v)‖2ε = ‖u‖2V1,ε
+ ‖v‖2V2,ε

.

We fix a constant γ with γ(p− 1)/(p+ 1) > 2. We define a function χε by

χε(x) =







ε−(N−1)−3(p+1)/(p−1) if |x| ≤ R0/ε, x /∈ A4δ
ε ,

(|x| /ε)γ if |x| ≥ R0/ε,
0 if x ∈ A4δ

ε ,

where R0 ≥ 1 is fixed so that V (x) > 0 for |x| ≥ R0 and Z8δ ⊂ B(0, R0).
Now we consider the following minimization problem

(4)

Mε = inf

{

‖(u, v)‖2ε
∣

∣

∫

RN

K(εx)Q(u, v)dx = 1,

∫

RN

χε(x)Q(u, v)dx ≤ 1, (u, v) ∈ Eε

}

.

First, using the same type of arguments developed in [16], we have the
following lemma.

Lemma 2. limε→0 ε
(N−1)(p−1)/(p+1)Mε = 0.

Proof. Let x0 ∈ A. Then, for any a > 0, there exists b > 0 such that
V1(x), V2(x) ∈ [0, a) for |x− x0| ≤ b. Without loss of generality, we can as-
sume |x0| = 1 so that Sδε ⊂ Aδε, where S is the unit sphere in R

N . Then,
using change of variables (polar coordenates) and setting u(r + 1/ε) = ū(r),
v(r + 1/ε) = v̄(r), we obtain that

Mε ≤ C0

∫

Sδ
ε

[|∇u(x)|2 + |∇v(x)|2 + a((u(x))2 + (v(x))2)]dx
(

∫

Sδ
ε

Q(u(x), v(x))dx
)2/(p+1)
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≤ Cε−(N−1)(p−1)/(p+1)

×
∫ δ/ε

−δ/ε[(ū
′(r))2 + (v̄′(r))2 + a((ū(r))2 + (v̄(r))2)]dr
(

∫ δ/ε

−δ/εQ(ū(r), v̄(r))dr
)2/(p+1)

,

where C0 and C are positive constants independent of ε. Here was used that
χε(x) = 0, ∀ x ∈ Sδε ; V1 and V2 are radially symmetric, and V1(εx), V2(εx) < a,
∀x ∈ Sδε . Setting ū(r) = u(

√
ar) and v̄(r) = v(

√
ar), where a > 0 is arbitrary,

we obtain,

lim
ε→0

ε(N−1)(p−1)/(p+1)Mε

≤ C a(p+3)/2(p+1) inf
u,v∈C∞

0
(−∞,∞)

∫∞

−∞[(u′)2 + (v′)2 + u2 + v2]dr

(
∫∞

−∞Q(u, v)dr)2/(p+1)
.

Then, since a is arbitrary and the last infimun is bounded, the lemma follows.
�

Lemma 3. For sufficiently small ε > 0, Mε is achieved at (ūε, v̄ε) ∈ Eε which

satisfies for some αε > 0 ≥ βε,
(Sαε, βε)






−∆ūε + V1(εx)ūε = αεK(εx)Qu(ūε, v̄ε) + βεχε(x)Qu(ūε, v̄ε) in R
N ,

−∆v̄ε + V2(εx)v̄ε = αεK(εx)Qv(ūε, v̄ε) + βεχε(x)Qv(ūε, v̄ε) in R
N ,

ūε ≥ 0, v̄ε ≥ 0 in R
N .

Proof. Let {(ūjε, v̄jε)}j ⊂ Eε be a minimizing sequence for Mε. We can assume
{(ūjε, v̄jε)}j ⊂ C∞

0,rad(R
N )×C∞

0,rad(R
N ), since C∞

0,rad(R
N )×C∞

0,rad(R
N ) is dense

in Eε. We take Rj > 0 such that supp(ūjε) ⊂ B(0, Rj) and supp(v̄jε) ⊂ B(0, Rj),
j ≥ 1. For a fixed ε > 0, we can assume that R0/ε < R1 < R2 < · · · and
limm→∞Rm = ∞. We define

Emε ≡ Eε ∩
(

W 1,2
0 (B(0, Rm))×W 1,2

0 (B(0, Rm))
)

.

We consider a restricted minimization problem

(5)

Mm
ε = inf

{

‖(u, v)‖2ε
∣

∣

∫

RN

K(εx)Q(u, v)dx = 1,

∫

RN

χε(x)Q(u, v)dx ≤ 1, (u, v) ∈ Emε

}

.

Now, we will prove that there exists a non-negative minimizer (umε , v
m
ε ) ofMm

ε

such that Mε ≤ Mm
ε and limm→∞Mm

ε = Mε. Indeed, let
{

(ukε , v
k
ε )
}

k
be a

minimizing sequence for Mm
ε . Then it follows that

{

(ukε , v
k
ε )
}

k
is bounded.

Since Emε is reflexive, there exists (umε , v
m
ε ) ∈ Emε such that

{

(ukε , v
k
ε )
}

k
is

weakly convergent to (umε , v
m
ε ), up to subsequence. Thus, ukε ⇀ umε weakly in

EV1,ε and vkε ⇀ vmε weakly in EV2,ε as k → ∞. Since EVi,ε∩ W 1,2
0 B((0, Rm))
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is compactly imbedded in Lp+1(B(0, Rm)), with i = 1, 2 and 2 < p + 1 < 2∗,
from (Q2) we have

(6)

∫

B(0,Rm)

K(εx)Q(umε , v
m
ε )dx = lim

k→∞

∫

B(0,Rm)

K(εx)Q(ukε , v
k
ε )dx = 1,

and
∫

B(0,Rm)

χεQ(umε , v
m
ε )dx = lim

k→∞

∫

B(0,Rm)

χεQ(ukε , v
k
ε )dx ≤ 1.

Since
{

(ukε , v
k
ε )
}

k
is weakly convergent to (umε , v

m
ε ), we have

‖(umε , vmε )‖2ε ≤ lim inf
k→∞

∥

∥(ukε , v
k
ε )
∥

∥

2

ε
=Mm

ε ≤ ‖(umε , vmε )‖2ε .

Thus, (umε , v
m
ε ) is a minimizer for Mm

ε . Since |∇ |umε || = |∇umε | and |∇ |vmε || =
|∇vmε | we see that ‖(umε , vmε )‖2ε = ‖(|umε | , |vmε |)‖2ε. Then, there exists a non-
negative minimizer (umε , v

m
ε ) of Mm

ε . Now, we observe that for any j ≥ 1,

lim
k→∞

∥

∥(ukε , v
k
ε )
∥

∥

2

ε
≤ ||(ujε, vjε)||2ε.

In fact, for any j ≤ k, B(0, Rj) ⊂ B(0, Rk). Thus,

W 1,2
0 (B(0, Rj)) ⊂W 1,2

0 (B(0, Rk)).

Consequently, Ejε ⊂ Ekε . This implies that M j
ε = ||(ujε, vjε)||2ε ≥

∥

∥(ukε , v
k
ε )
∥

∥

2

ε
=

Mk
ε . We note that

Mε ≤ lim
j→∞

M j
ε = lim

j→∞
||(ujε, vjε)||2ε ≤ lim

j→∞
||(ūjε, v̄jε)||2ε =Mε.

Therefore,Mm
ε →Mε as m→ ∞. Thus {(umε , vmε )}m is a minimizing sequence

for Mε.
Since (umε , v

m
ε ) is a minimizer for Mm

ε , there exist Lagrange multipliers αmε ,
βmε ∈ R such that (umε , v

m
ε ) satisfies the system (Sαm

ε
, βm

ε
) in B(0, Rm). Tak-

ing a subsequence if necessary, we can assume that for some (ūε, v̄ε) ∈ Eε,
{(umε , vmε )}m converges weakly to (ūε, v̄ε) in Eε as m→ ∞. Since

∫

RN

χεQ(umε , v
m
ε )dx ≤ 1,

it follows that for any R ≥ R0

ε ,
∫

RN\B(0,R)

K(εx)Q(umε , v
m
ε )dx ≤ C(ε/R)γ

for some C > 0. By the Dominated Convergence Theorem of Lebesgue, we
obtain

∫

B(0,R)
K(εx)Q(ūε, v̄ε)dx ≥ 1− C (ε/R)

γ
. This implies that

∫

RN

K(εx)Q(ūε, v̄ε)dx = lim
R→∞

∫

B(0,R)

K(εx)Q(ūε, v̄ε)dx ≥ 1.
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We claim that

(7)

∫

RN

K(εx)Q(ūε, v̄ε)dx = 1.

In fact, arguing by contradiction, we assume that
∫

RN K(εx)Q(ūε, v̄ε)dx > 1.

Then there exists R̄ > 0 so that
∫

B(0,R̄)K(εx)Q(ūε, v̄ε)dx > 1. Hence, we get

limm→∞

∫

B(0,R̄)
K(εx)Q(umε , v

m
ε )dx =

∫

B(0,R̄)
K(εx)Q(ūε, v̄ε)dx > 1. Thus,

there exists m0 ∈ N such that
∫

B(0,R̄)
K(εx)Q(um0

ε , vm0

ε )dx > 1. But this is

impossible, since
∫

RN K(εx)Q(umε , v
m
ε )dx = 1 for all m ∈ N.

Since
∫

B(0,T )
χεQ(umε , v

m
ε )dx ≤ 1 for each T > 0 we get, again using the

Dominated Convergence Theorem of Lebesgue, that
∫

B(0,T )

χεQ(ūε, v̄ε)dx ≤ 1

for each T > 0. Consequently,

(8)

∫

RN

χεQ(ūε, v̄ε)dx ≤ 1.

Since ‖(ūε, v̄ε)‖2ε ≤ lim infm→∞ ‖(umε , vmε )‖2ε = Mε, we infer that (ūε, v̄ε) is a
minimizer of Mε.

Now, we will prove that in system (Sαm
ε
, βm

ε
), αmε > 0 ≥ βmε . In fact, using

same ideas in [14], we take ξ0, ξ1 ∈ C∞
0 (RN ) non-negative radially symmetric

functions with supp(ξ0) ⊂ int(A4δ
ε ) and supp(ξ1) ⊂

{

x∈R
N | |x| < d(0, A4δ

ε )
}

.
Define

D(s, t) ≡
∫

B(0,Rm)

K(εx)Q((1 + tξ0 − sξ1)(u
m
ε , v

m
ε ))dx.

The function D is continuously differentiable in a neighborhood of (0, 0). We
note that D(0, 0) = 1 and ∂

∂tD(0, 0) = (p+1)
∫

B(0,Rm)
K(εx)ξ0Q (umε , v

m
ε ) dx >

0. By the implicit function theorem, for small τ > 0 there exists t ∈ C1(−τ, τ)
such that

t(0) = 0 and D(s, t(s)) = 1 for all s ∈ (−τ, τ).
Hence

(9) (p+ 1)

∫

B(0,Rm)

K(εx)(t′(0)ξ0 − ξ1)Q (umε , v
m
ε ) dx = 0.

Moreover, using the definition of χε and the fact that χεξ0 ≡ 0 in B(0, Rm),
we obtain

d

ds

∣

∣

∣

s=0

∫

B(0,Rm)

χεQ ((1 + t(s)ξ0 − sξ1)(u
m
ε , v

m
ε )) dx

= −(p+ 1)ε−(N−1)−3(p+1)/(p−1)

∫

supp(ξ1)

ξ1Q(umε , v
m
ε )dx < 0.(10)
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This implies that there exists c > 0 such that for any s ∈ (0, c),
∫

B(0,Rm)

χεQ ((1 + t(s)ξ0 − sξ1)(u
m
ε , v

m
ε )) dx < 1.

Since (umε , v
m
ε ) is a minimizer for Mm

ε , we have

0 ≤ d

ds

∣

∣

∣

s=0

∫

B(0,Rm)

[|∇ ((1 + t(s)ξ0 − sξ1)u
m
ε )|2 + |∇ ((1 + t(s)ξ0 − sξ1)v

m
ε )|2

(11)

+ (1 + t(s)ξ0 − sξ1)
2
(V1(εx)(u

m
ε )2 + V2(εx)(v

m
ε )2)]dx

= 2

∫

B(0,Rm)

[∇umε .∇((t′(0)ξ0 − ξ1)u
m
ε ) +∇vmε .∇((t′(0)ξ0 − ξ1)v

m
ε )

+ (t′(0)ξ0 − ξ1)
(

V1(εx)(u
m
ε )2 + V2(εx)(v

m
ε )2

)

]dx.

Using (t′(0)ξ0 − ξ1)(u
m
ε , v

m
ε ) as test function in (Sαm

ε
, βm

ε
), the homogeneity of

Q, the definition of χε and (9), we deduce that

0 ≤
∫

B(0,Rm)

[∇umε .∇((t′(0)ξ0 − ξ1)u
m
ε ) +∇vmε .∇((t′(0)ξ0 − ξ1)v

m
ε )

+ (t′(0)ξ0 − ξ1)
(

V1(εx)(u
m
ε )2 + V2(εx)(v

m
ε )2

)

]dx

= (p+ 1)αmε

∫

B(0,Rm)

(t′(0)ξ0 − ξ1)K(εx)Q(umε , v
m
ε )dx

+ (p+ 1)βmε

∫

B(0,Rm)

χε(t
′(0)ξ0 − ξ1)Q(umε , v

m
ε )dx

= − (p+ 1)βmε ε
−(N−1)−3(p+1)/(p−1)

∫

supp(ξ1)

ξ1Q(umε , v
m
ε )dx.

By (10) and (11) we conclude that βmε ≤ 0.
Now, taking (umε , v

m
ε ) as test function in (Sαm

ε
, βm

ε
) and using (6) we obtain

(12) ‖(umε , vmε )‖2ε = (p+ 1)αmε + (p+ 1)βmε

∫

B(0,Rm)

χεQ(umε , v
m
ε )dx.

This implies that αmε > 0.
Now we will show that (ūε, v̄ε) satisfies the system (Sαε, βε

). We claim
that {αmε }m is bounded for small ε > 0. Indeed, arguing by contradiction
assume, without loss of generality, that limm→∞ αmε = ∞. For any σ > 0,
choose a function φσ ∈ C∞

0 (int(A4δ
ε )) such that 0 ≤ φσ ≤ 1, φσ(x) = 1

for d(x, ∂A4δ
ε ) ≥ σ, and |∇φσ| ≤ 2/σ. Using φσ(u

m
ε , v

m
ε ) as test function in

(Sαm
ε
, βm

ε
) and that χεφσ ≡ 0, we obtain

∫

RN

[|∇umε |2 φσ +∇umε .∇φσumε + |∇vmε |2 φσ +∇vmε .∇φσvmε

+ φσ(V1(εx) (u
m
ε )

2
+ V2(εx) (v

m
ε )

2
)]dx
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= (p+ 1)αmε

∫

RN

K(εx)Q(umε , v
m
ε )φσdx.(13)

From infx∈supp(|∇φσ |) V (εx) > 0 and the properties of φσ, we have
∫

RN

[|∇umε |2 φσ +∇umε .∇φσumε + |∇vmε |2 φσ +∇vmε .∇φσvmε

+ φσ(V1(εx) (u
m
ε )

2
+ V2(εx) (v

m
ε )

2
)]dx

≤ C ‖(umε , vmε )‖2ε(14)

for some C > 0, independent of m. By (13), (14) and the fact that

{‖(umε , vmε )‖2ε}m
is a bounded sequence, we see that for some C > 0, independent of m,

∫

RN

K(εx)Q(umε , v
m
ε )φσdx ≤ C/αmε .

Thus,

(15) lim
m→∞

∫

{x∈A4δ
ε

| d(x,∂A4δ
ε

)≥σ}

K(εx)Q(umε , v
m
ε )dx = 0.

From the condition
∫

RN χεQ(umε , v
m
ε )dx ≤ 1 and from the definition of χε, we

have

(16)

∫

RN\B(0,R0/ε)

K(εx)Q(umε , v
m
ε )dx ≤ C (ε/R0)

γ

and

(17)

∫

B(0,R0/ε)\A4δ
ε

K(εx)Q(umε , v
m
ε )dx ≤ Cε(N−1)+3(p+1)/(p−1)

for some positive constant C. Now, using
∫

RN K(εx)Q(umε , v
m
ε )dx = 1, (15),

(16) and (17) we infer that

lim inf
m→∞

∫

{x∈A4δ
ε

| d(x,∂A4δ
ε

)≤σ}

K(εx)Q(umε , v
m
ε )dx

≥ 1− Cε(N−1)+3(p+1)/(p−1) − C (ε/R0)
γ
> 0

for small ε > 0 and for each σ > 0. Then for each σ > 0 there is a sequence
{xm}m in A4δ

ε such that limm→∞ d(xm, ∂A
4δ
ε ) = 0 and Q(umε (xm), vmε (xm)) =

1. Since A4δ
ε is an compact subset of RN , we see that limm→∞ xm = x0 ∈ A4δ

ε ,
up to subsequence. This implies that x0 ∈ ∂A4δ

ε and limm→∞ |xm| = |x0| =
r0 > 0 so that for each σ > 0

(18) lim inf
m→∞

∫

Dσ
r0

K(εx)Q(umε , v
m
ε )dx > 0,
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where Dσ
r0 is defined by Dσ

r0 ≡
{

x ∈ R
N | r0 − σ ≤ |x| ≤ r0 + σ

}

. To reach a
contradiction of (18), we will prove the following statements:

(19)

∫

Dσ
r0

[

((umε − 1)+)
2 + ((vmε − 1)+)

2
]

dx ≤ Cσ2/N ‖(umε , vmε )‖2ε

for m large and some positive constant C, independent of σ;
∫

Dσ
r0

[|∇(umε − 1)+|2 + |∇(vmε − 1)+|2 + V1(εx)((u
m
ε − 1)+)

2(20)

+ V2(εx)((v
m
ε − 1)+)

2]dx

≤ ‖(umε , vmε )‖2ε ,

(21)

∫

Dσ
r0

K(εx)Q((umε − 1)+, (v
m
ε − 1)+)dx ≤ Cσs(p+1)/N

for some s ∈ (0, 1) and C > 0, C independent of σ; and
(22)
∫

Dσ
r0

[(umε )p+1 +(vmε )p+1]dx ≤ C0

∫

Dσ
r0

K(εx)Q((umε − 1)+, (v
m
ε − 1)+)dx+C0σ

for some positive constant C0.
To prove the assertion (19) note that, by the Poincaré inequality, there is a

positive constant C1 so that
∫

Dσ
r0

((umε − 1)+)
2dx ≤ (

∣

∣Dσ
r0

∣

∣ /ωN)
2/N

∫

Dσ
r0

|∇(umε − 1)+|2 dx

≤ C1σ
2/N

∫

Dσ
r0

|∇umε |2 dx

≤ C1σ
2/N ‖(umε , vmε )‖2ε .

Similarly
∫

Dσ
r0

((vmε − 1)+)
2dx ≤ C2σ

2/N ‖(umε , vmε )‖2ε for some constant C2 > 0

and the inequality (19) follows.
The verification of (20) is immediate.
For the statement (21), we use the interpolation inequality, Sobolev inequal-

ity, (19) and (20) to find
∫

Dσ
r0

((umε − 1)+)
p+1dx

≤ C0(

∫

Dσ
r0

((umε − 1)+)
2dx)s1(p+1)/2 × (

∫

Dσ
r0

|∇(umε − 1)+|2 dx)(1−s1)(p+1)/2

≤ C1(σ
2/N ‖(umε , vmε )‖2ε)s1(p+1)/2 × (‖(umε , vmε )‖2ε)(1−s1)(p+1)/2

≤ C2σ
s1(p+1)/N
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for s1 ∈ (0, 1) and for some constants C0, C1, C2 > 0, independent of σ. Simi-
larly, we get

∫

Dσ
r0

((vmε − 1)+)
p+1dx ≤ C3σ

s2(p+1)/N for some constants C3 > 0

and s2 ∈ (0, 1). Using this information and (Q2), (21) follows.
Finally, to obtain (22), we note that

∫

Dσ
r0

(umε )p+1dx ≤
∫

Dσ
r0

∩{um
ε
≥1}

((umε − 1)+ + 1)p+1dx+
∣

∣Dσ
r0

∣

∣

≤ 2p
∫

Dσ
r0

((umε − 1)+)
p+1dx+ (2p + 1)

∣

∣Dσ
r0

∣

∣ .

Also,
∫

Dσ
r0

(vmε )p+1dx ≤ 2p
∫

Dσ
r0

((vmε − 1)+)
p+1dx+ (2p + 1)

∣

∣Dσ
r0

∣

∣. Therefore

∫

Dσ
r0

[(umε )p+1 + (vmε )p+1]dx(23)

≤ 2p
∫

Dσ
r0

[((umε − 1)+)
p+1 + ((vmε − 1)+)

p+1]dx + 2(2p + 1)
∣

∣Dσ
r0

∣

∣ .

Using (23), (Q2) and the fact that
∣

∣Dσ
r0

∣

∣ ≤ Cσ for all smal σ > 0 and for some
positive constant C, we obtain (22). From (Q2), (21) and (22) it follows that
∫

Dσ
r0

K(εx)Q(umε , v
m
ε )dx ≤ C0η2

∫

Dσ
r0

[(umε )p+1 + (vmε )p+1]dx

≤ C1

∫

Dσ
r0

K(εx)Q((umε − 1)+, (v
m
ε − 1)+)dx+ C1σ

≤ C(σs(p+1)/N + σ)

for some s ∈ (0, 1) and for some constants C0, C1, C > 0, independent of σ and
m. Therefore,

lim inf
m→∞

∫

Dσ
r0

K(εx)Q(umε , v
m
ε )dx ≤ C(σs(p+1)/N + σ)

for all σ > 0 small. But this contradicts (18), given the arbitrariness of σ > 0.
Thus, we conclude that {αmε }m is bounded. This implies that limm→∞ αmε =
αε ≥ 0, up to subsequence. Using (12) and the fact that

0 ≤
∫

RN

χε(x)Q(umε , v
m
ε )dx ≤ 1

for all m ∈ N, we get limm→∞ βmε = βε ≤ 0. Since (umε , v
m
ε ) is solution of

(Sαm
ε
, βm

ε
) we have that
∫

RN

[∇umε .∇ϕ+∇vmε .∇ψ + V1(εx)u
m
ε ϕ+ V2(εx)v

m
ε ψ]dx

= αmε

∫

RN

K(εx)[ϕQu(u
m
ε , v

m
ε ) + ψQv(u

m
ε , v

m
ε )]dx



850 P. C. CARRIÃO, N. H. LISBOA, AND O. H. MIYAGAKI

+ βmε

∫

RN

χε[ϕQu(u
m
ε , v

m
ε ) + ψQv(u

m
ε , v

m
ε )]dx(24)

for any ϕ, ψ ∈ C∞
0,rad(R

N ). Finally, taking the limit in (24) as m→ ∞, we see
that

∫

RN

[∇ūε.∇ϕ+∇v̄ε.∇ψ + V1(εx)ϕūε + V2(εx)ψv̄ε)]dx

= αε

∫

RN

K(εx)[ϕQu(ūε, v̄ε) + ψQv(ūε, v̄ε)]dx

+ βε

∫

RN

χε[ϕQu(ūε, v̄ε) + ψQv(ūε, v̄ε)]dx

for any ϕ, ψ ∈ C∞
0,rad(R

N ). Therefore, (ūε, v̄ε) satisfies (Sαε, βε
). From (7),

βε ≤ 0, the homogeneity of Q and the fact that (ūε, v̄ε) is solution of (Sαε, βε
),

we conclude that ‖(ūε, v̄ε)‖2ε ≤ (p+1)αε and therefore αε > 0. This completes
the proof of lemma. �

Claim: For ε small,

(25)

∫

RN

χεQ(ūε, v̄ε)dx < 1.

This claim is one of the crucial setps of our work. We will postpone its proof
for while. If this is the case, for any ϕ, ψ ∈ C∞

0,rad(R
N ), we define

ϕs ≡ (ūε + sϕ)

(
∫

RN

K(εx)Q(ūε + sϕ, v̄ε + sψ)dx

)−1/(p+1)

and

ψs ≡ (v̄ε + sψ)

(
∫

RN

K(εx)Q(ūε + sϕ, v̄ε + sψ)dx

)−1/(p+1)

.

From (7) we conclude that (ϕ0, ψ0) = (ūε, v̄ε). Since Q is homogeneous of degree
p+1, we obtain

∫

RN K(εx)Q(ϕs, ψs)dx = 1.Also, by (25),
∫

RN χεQ(ϕs, ψs)dx <
1 for small |s|.

Thus,

0 =
d

ds
‖(ϕs, ψs)‖2ε |s=0

= − 2Mε/(p+ 1)

∫

RN

K(εx)[ϕQu(ūε, v̄ε) + ψQv(ūε, v̄ε)]dx

+ 2

∫

RN

[∇ūε.∇ϕ+∇v̄ε.∇ψ + V1(εx)ūεϕ+ V2(εx)v̄εψ]dx.

This implies that (ūε, v̄ε) satisfies the system (SMε/(p+1), 0). Then, as the func-
tions Qu and Qv are homogeneous of degree p, we deduce that (ũε, ṽε), where

ũε = (Mε/(p+ 1))
1/(p−1)

ūε and ṽε = (Mε/(p+ 1))
1/(p−1)

v̄ε, is a solution of

(S̃).

Lemma 4. limε→0 ε
(N−1)(p−1)/(p+1)αε = 0.
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Proof. Assume by contradiction, taking a subsequence if necessary, that

lim
ε→0

ε(N−1)(p−1)/(p+1)αε = α ∈ (0,∞] .

For any σ > 0, we choose φσ ∈ C∞
0

(

int(A4δ
ε )
)

satisfying 0 ≤ φσ ≤ 1, φσ(x) = 1

for d(x, ∂A4δ
ε ) ≥ σ, and |∇φσ| ≤ 2/σ. Using φσ(ūε, v̄ε) as test function in the

system (Sαε, βε
) and the fact that χεφσ ≡ 0 , we have

∫

RN

[|∇ūε|2 φσ +∇ūε.∇φσ ūε + |∇v̄ε|2 φσ +∇v̄ε.∇φσ v̄ε

+ φσ
(

V1(εx)(ūε)
2 + V2(εx)(v̄ε)

2
)

]dx

= (p+ 1)αε

∫

RN

K(εx)Q(ūε, v̄ε)φσdx.(26)

From infx∈supp(|∇φσ |) V (εx) > 0 and the properties of φσ, we obtain
∫

RN

[|∇ūε|2 φσ +∇ūε.∇φσ ūε + |∇v̄ε|2 φσ +∇v̄ε.∇φσ v̄ε

+ φσ
(

V1(εx)(ūε)
2 + V2(εx)(v̄ε)

2
)

]dx

≤ C ‖(ūε, v̄ε)‖2ε(27)

for some C > 0, independent of ε > 0. From (26) and (27) it follows that
∫

RN K(εx)Q(ūε, v̄ε)φσdx ≤ C ‖(ūε, v̄ε)‖2ε /αε for some positive constant C, in-
dependent of ε > 0. By Lemma 2, for each σ > 0,

lim
ε→0

∫

RN

K(εx)Q(ūε, v̄ε)φσdx = 0.

Then

(28) lim
ε→0

∫

{x∈A4δ
ε

| d(x,∂A4δ
ε

)≥σ}

K(εx)Q(ūε, v̄ε)dx = 0.

From (8) and the definition of χε, we get

(29)

∫

RN\B(0,R0/ε)

K(εx)Q(ūε, v̄ε)dx ≤ C (ε/R0)
γ

and

(30)

∫

B(0,R0/ε)\A4δ
ε

K(εx)Q(ūε, v̄ε)dx ≤ Cε(N−1)+3(p+1)/(p−1)

for some C > 0. From (7), (28), (29) and (30), we see that for each σ > 0,

(31) lim inf
ε→0

∫

{x∈A4δ
ε

| d(x,∂A4δ
ε

)≤σ}

K(εx)Q(ūε, v̄ε)dx > 0.

From (31), for every σ > 0, there exists a sequence {xm}m in A4δ
ε such that

limm→∞ d(xm, ∂A
4δ
ε ) = 0. Therefore, there exists some x0 ∈ ∂A4δ, with
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limm→∞ xm = x0

ε , and ω > 0 such that for any σ > 0,

(32) lim inf
ε→0

∫

{x∈RN | ||x|−|x0|/ε|≤σ}

K(εx)Q(ūε, v̄ε)dx ≥ ω,

otherwise we would have limε→0

∫

RN K(εx)Q(ūε, v̄ε)dx = 0. But this is im-
possible because it contradicts (7).

We fix σ > 0 and choose a radially symmetric function ψσ ∈ C∞
0 so that

ψσ(x) =

{

0 if ||x| − |x0| /ε| ≥ 2σ,
1 if ||x| − |x0| /ε| ≤ σ,

0 ≤ ψσ ≤ 1 and |∇ψσ| ≤ 3/σ. From (32) it follows that

(33) lim inf
ε→0

∫

RN

K(εx)Q(ψσūε, ψσ v̄ε)dx ≥ ω.

Now, we claim that

(34) lim
ε→0

ε(N−1)(p−1)/(p+1) ‖(ψσūε, ψσ v̄ε)‖2ε = 0.

Indeed, by the Cauchy-Schwarz inequality, the boundedness of the gradient
of ψσ, and by the fact that α0 = infx∈supp(ψσ) V (εx) > 0, we have

‖(ψσūε, ψσ v̄ε)‖2ε
≤ C1

∫

supp(ψσ)

[|∇ūε|2 + |∇v̄ε|2 + (ūε)
2 + (v̄ε)

2 + V1(εx)(ūε)
2

+ V2(εx)(v̄ε)
2]dx

≤ C1

∫

supp(ψσ)

[|∇ūε|2 + |∇v̄ε|2 +
1

α0
V1(εx)(ūε)

2 +
1

α0
V2(εx)(v̄ε)

2

+ V1(εx)(ūε)
2 + V2(εx)(v̄ε)

2]dx

≤ C2 ‖(ūε, v̄ε)‖2ε = C2Mε

for some positive constants C1 and C2, independent of ε > 0. By Lemma 2,
(34) follows.

On other hand, putting Dε ≡
{

x ∈ R
N | |x0| /ε− 2σ ≤ |x| ≤ |x0| /ε+ 2σ

}

,
we see that

lim inf
ε→0

ε(N−1)(p−1)/(p+1) ‖(ψσūε, ψσv̄ε)‖2ε

≥ lim inf
ε→0

(

[
∫

RN

K(εx)Q(ψσūε, ψσ v̄ε)dx

]2/(p+1)
)

× lim inf
ε→0

(

ε(N−1)(p−1)/(p+1) inf
u,v∈C1

0
(Dε)

‖(u, v)‖2ε
[
∫

RN K(εx)Q(u, v)dx]2/(p+1)

)

≥ Cω2/(p+1) lim inf
ε→0

((|x0| − 2σε)N−1(|x0|+ 2σε)−2(N−1)/(p+1))Jσ

= Cω2/(p+1) |x0|(N−1)(p−1)/(p+1)
Jσ > 0(35)
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for some C > 0, where

Jσ ≡ inf
g0,g1∈C1

0
(−2σ,2σ)

∫ 2σ

−2σ
[(g′0(s))

2 + (g′1(s))
2 + α0((g0(s))

2
+ (g1(s))

2
)]ds

[
∫ 2σ

−2σ |g0(s)|
p+1

ds]2/(p+1) + [
∫ 2σ

−2σ |g1(s)|
p+1

ds]2/(p+1)
.

From (34) and (35) we have a contradiction. So, to conclude the proof of the
lemma, we will have a verification for (35).

Using (Q2), change of variables and setting g0(s + |x0| /ε) = ḡ0(s), g1(s +
|x0| /ε) = ḡ1(s), we deduce that

‖(u, v)‖2ε
[
∫

RN K(εx)Q(u, v)dx]2/(p+1)

≥ Cε−(N−1)(p−1)/(p+1)(|x0| − 2σε)N−1(|x0|+ 2σε)−2(N−1)/(p+1)

×
∫ 2σ

−2σ
[(ḡ′0(s))

2 + (ḡ′1(s))
2 + α0((ḡ0(s))

2 + (ḡ1(s))
2)]ds

(

∫ 2σ

−2σ |ḡ0(s)|
p+1

ds
)2/(p+1)

+
(

∫ 2σ

−2σ |ḡ1(s)|
p+1

ds
)2/(p+1)

≥ Cε−(N−1)(p−1)/(p+1)(|x0| − 2σε)N−1(|x0|+ 2σε)−2(N−1)/(p+1)Jσ

for some positive constant C. Then

ε(N−1)(p−1)/(p+1) inf
u,v∈C1

0
(Dε)

‖(u, v)‖2ε
[
∫

RN K(εx)Q(u, v)dx]2/(p+1)

≥ C(|x0| − 2σε)N−1(|x0|+ 2σε)−2(N−1)/(p+1)Jσ.(36)

Combining (33) and (36) we obtain (35). The proof of the lemma is complete.
�

Lemma 5. If (ūε, v̄ε) and αε are as above, then

lim
ε→0

|| (αε)1/(p−1) ūε||L∞(RN ) = lim
ε→0

|| (αε)1/(p−1) v̄ε||L∞(RN ) = 0.

Proof. Let wε = (αε)
1/(p−1)

(ūε+ v̄ε). By (Q1), (Q5) and the fact that (ūε, v̄ε)
is solution (Sαε, βε

) it follows that

(37) −∆wε + V (εx)wε ≤ CK(εx)(wε)
p in R

N

for some positive constant C.
Now, we claim that

(38) lim
ε→0

||wε||L∞({x∈RN | |y|/ε−1≤|x|≤|y|/ε+1}) = 0

for all y ∈ R
N\ {0} and

(39) lim
ε→0

||wε||L∞(B(0,r0/ε)) = 0

for some constant r0 > 0.
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Proof of (38): First of all we will show that

(40) lim
ε→0

∫

B(y/ε,2)

(αε)
(p+1)/(p−1)

K(εx)Q (ūε, v̄ε) dx = 0,

all y ∈ R
N\ {0}. Suppose that

lim inf
ε→0

∫

B(y/ε,2)

(αε)
(p+1)/(p−1)K(εx)Q (ūε, v̄ε) dx > 0

for some y ∈ R
N\ {0}. As K, ūε and v̄ε are radially symmetric functions, it

follows that

(ε/ |y|)N−1
∫

{x∈RN | |y|/ε−2≤|x|≤|y|/ε+2}

(αε)
(p+1)/(p−1)K(εx)Q (ūε, v̄ε) dx

≥ C

∫

B(y/ε,2)

(αε)
(p+1)/(p−1)

K(εx)Q (ūε, v̄ε) dx.

This implies that

lim inf
ε→0

(ε/ |y|)N−1
∫

{x∈RN | |y|/ε−2≤|x|≤|y|/ε+2}

(αε)
(p+1)/(p−1)

K(εx)Q (ūε, v̄ε) dx > 0.

In view of (7) and Lemma 4, we have a contradiction. Similarly,

lim sup
ε→0

∫

B(y/ε,2)

(αε)
(p+1)/(p−1)

K(εx)Q (ūε, v̄ε) dx = 0, ∀y ∈ R
N\ {0}

and the proof of (40) is complete.
Note that
∫

B(y/ε,2)

(wε)
p+1

dx ≤ C

∫

B(y/ε,2)

(αε)
(p+1)/(p−1)

K(εx)Q (ūε, v̄ε) dx

for some C > 0. From this and (40) we see that

(41) lim
ε→0

∫

B(y/ε,2)

(wε)
p+1 dx = 0

for all y ∈ R
N\ {0}. Now we fix ε > 0. Using (37) and the fact that wε is

radially symmetric we deduce, by the Moser iteration argument (see Theorem
9.20 in [26]), that

||wε||L∞({x∈RN | |y|/ε−1≤|x|≤|y|/ε+1}) ≤ C

(

∫

B(y/ε,2)

(wε)
p+1

dx

)1/(p+1)

for some positive constant C, independent of ε > 0. Using this and (41) we
obtain (38).

Proof of (39): From (8), the definition of χε and the fact that 0 /∈ A4δ, it
follows that there is a constant r0 > 0 such that

(42)

∫

B(0,2r0/ε)

K(εx)Q(ūε, v̄ε)dx ≤ Cε(N−1)+3(p+1)/(p−1)
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for small ε > 0 and for some C > 0. By (42) and Lemma 4, we have

(43)

∫

B(0,2r0/ε)

(αε)
(p+1)/(p−1)

K(εx)Q (ūε, v̄ε) dx ≤ Cε3(p+1)/(p−1)

for small ε > 0 and for some C > 0. As (Q2) and (43) are satisfied, we see that

(44)

∫

B(0,2r0/ε)

(wε)
p+1

dx ≤ Cε3(p+1)/(p−1)

for small ε > 0 and for some C > 0. Then using Theorem 9.20 in [26] and (44)
we conclude that

||wε||L∞(B(0,r0/ε)) ≤ CεN/(p+1)ε3/(p−1)

for some positive constant C, independent of ε > 0. This shows (39). From
(38) and (39) the lemma follows. �

In the next lemma, we also will use the arguments developed by Byeon and
Wang in [18] adapted to our case.

Lemma 6. lim infε→0 ε
−2αε > 0.

Proof. On the contrary, we assume for a subsequence, still denoted by ε, that
ε−2αε → 0 as ε → 0. Let φ be a cut-off function such that φ(x) = 1 for x ∈
A4δ
ε , φ(x) = 0 for x /∈ A5δ

ε , 0 ≤ φ ≤ 1 and |∇φ| ≤ cε, c > 0. Then, it follows
that

(45) lim
ε→0

∫

RN

[

|∇(φūε)|2 + |∇(φv̄ε)|2
]

dx = 0.

In fact, since V (εx) ≥ δ0 > 0 for all x ∈ supp(|∇φ|), we see that
∫

RN

[

|∇(φūε)|2 + |∇(φv̄ε)|2
]

dx

≤ 2(cε)2δ−1
0

∫

supp(|∇φ|)

[V1(εx)(ūε)
2 + V2(εx)(v̄ε)

2]dx

+ 2

∫

RN

[|∇ūε|2 + |∇v̄ε|2]dx

≤ C

∫

RN

[|∇ūε|2 + |∇v̄ε|2 + V1(εx)(ūε)
2 + V2(εx)(v̄ε)

2]dx = C ‖(ūε, v̄ε)‖2ε
for some positive constant C, independent of small ε > 0. This and Lemma 3
imply

∫

RN

[

|∇(φūε)|2 + |∇(φv̄ε)|2
]

dx ≤ C1αε ≤ C1ε
−2αε

for some C1 > 0 independent of small ε > 0. Hence, we get (45).
Now, using change of variables, (Q2), the Hölder inequality and Sobolev

imbedding results, we see that
∫

A4δ
ε

K(εx)Q(ūε(x), v̄ε(x))dx
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≤ C
∣

∣A4δ
∣

∣

(2∗−(p+1))/2∗

ε−N
(

∫

A4δ

(φ (y/ε) ūε (y/ε))
2∗
dy
)(p+1)/2∗

+ C
∣

∣A4δ
∣

∣

(2∗−(p+1))/2∗

ε−N
(

∫

A4δ

(φ (y/ε) v̄ε (y/ε))
2∗
dy
)(p+1)/2∗

≤ C
∣

∣A4δ
∣

∣

(2∗−(p+1))/2
εN(p−1)/2

(

∫

RN

|∇(φūε)|2 dx
)(p+1)/2

+ C
∣

∣A4δ
∣

∣

(2∗−(p+1))/2
εN(p−1)/2

(

∫

RN

|∇(φv̄ε)|2 dx
)(p+1)/2

for some C > 0 independent of ε. From (45) it follows that

(46) lim
ε→0

∫

A4δ
ε

K(εx)Q(ūε, v̄ε)dx = 0.

From (8) and the definition of χε, we conclude that

(47) lim
ε→0

∫

B(0,R0/ε)\A4δ
ε

K(εx)Q(ūε, v̄ε)dx = 0

and

(48) lim
ε→0

∫

RN\B(0,R0/ε)

K(εx)Q(ūε, v̄ε)dx = 0.

As a consequence, from (46), (47) and (48) we have

lim
ε→0

∫

RN

K(εx)Q(ūε, v̄ε)dx = 0.

But this is a contradiction with (7). The proof of lemma is complete. �

Completion of the proof for Theorem 1. To complete the proof of The-
orem 1, we use arguments developed in [11], [16], [17] and [18]. We define

Uε ≡ (Cαε)
1/(p−1)

(ūε + v̄ε), where C > 0 was obtained in (37). Note that

(49) −∆Uε + V (εx)Uε ≤ K(εx)(Uε)
p in R

N .

By Lemma 5,

(50) lim
ε→0

‖Uε‖L∞(RN ) = 0.

Let

2c = inf
{

V (x) | x ∈ B(0, 3R0)\Zδ
}

> 0.

So, we conclude that

(51) Uε(x) ≤ exp(−cd(x, ∂(B(0, 3R0/ε)\Zδε )))
for all x ∈ B(0, 3R0/ε)\Zδε and for some c > 0. Indeed, from (49) and (50) it
follows that

(52) ∆Uε − cUε ≥ 0 in B(0, 3R0/ε)\Zδε
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for small ε > 0. Putting Fε(x) = exp(−√
cd(x, ∂(B(0, 3R0/ε)\Zδε ))) we deduce

that

(53) ∆Fε − cFε < 0 in B(0, 3R0/ε)\Zδε .
By (50), (52), (53) and the comparison principle we obtain (51). Using (51) we
have that

(54) Uε(x) ≤ exp(−cδ/ε) in Z3δ
ε \Z2δ

ε

for some constant c > 0.
For a connected component Λ of int(Z4δ\A4δ), we consider the first eigen-

value problem on Λ,

(55)

{

−∆φ = λ1φ in Λ,
φ = 0 on ∂Λ.

We can assume that maxx∈Λ∩∂Z3δ φ(x) ≥ 1. Now, we claim that

(56) Uε(x) ≤ C exp(−cδ/ε) in Λε ∩ Z3δ
ε ,

where Λε =
{

x ∈ R
N | εx ∈ Λ

}

. To justify the assertion (56), we define
φε(x) ≡ exp(−cδ/ε)φ(εx). Using (Q2) and (8), we see that

(57)

∫

RN

χε(Uε)
p+1dx ≤ C (αε)

(p+1)/(p−1)

for some positive constant C. Now, let z ∈ Z3δ
ε \A3δ

ε . Then, by Lemma 4, (57)
and the definition of χε, we conclude that

(58)

∫

B(z,δ/ε)

(Uε)
p+1dx ≤ Cε3(p+1)/(p−1)

for small ε > 0. From Theorem 9.20 in [26] and (58) it follows that

sup
B(z,δ/2ε)

Uε ≤ Cε3/(p−1)

for small ε > 0. Thus,

(59) Uε ≤ Cε3/(p−1) in Z3δ
ε \A3δ

ε .

From (49) and (59) we have

(60) ∆Uε + C1ε
3Uε ≥ 0 in Λε ∩ Z3δ

ε

for some positive constant C1. Since φ satisfies (55), we deduce that, for small
ε > 0,

(61) ∆φε + C1ε
3φε ≤ 0 in Λε ∩ Z3δ

ε .

From (54) and the fact that φ(x) ≥ 1 for x ∈ Λ ∩ ∂Z3δ, we conclude that
(Uε − φε)+ = 0 on Λε ∩ (Z3δ

ε \Z2δ
ε ). From (60) and (61) we see that

(62) −∆(Uε − φε) ≤ C1ε
3 (Uε − φε) in Λε ∩ Z3δ

ε .
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As in [11], using (Uε − φε)+ as a test function in (62) and the Poincaré inequal-
ity, we obtain

∫

Λε∩Z3δ
ε

∣

∣∇ (Uε − φε)+
∣

∣

2
dx(63)

≤ C1ε
3

∫

Λε∩Z3δ
ε

(

(Uε − φε)+
)2
dx

≤ C1ε
3(
∣

∣Λε ∩ Z3δ
ε

∣

∣ /ωN)
2/N

∫

Λε∩Z3δ
ε

∣

∣∇ (Uε − φε)+
∣

∣

2
dx

≤ Cε

∫

Λε∩Z3δ
ε

∣

∣∇ (Uε − φε)+
∣

∣

2
dx

for some C > 0. From (63) it follows that (Uε − φε)+ = 0 in Λε ∩Z3δ
ε for small

ε > 0. This shows (56). From (51) and (56), we deduce that for some C, c > 0,

(64) ‖Uε‖L∞(B(0,3R0/ε−δ/ε)\A4δ
ε

) ≤ C exp(−cδ/ε).

Our next goal is to prove that

(65) Uε(x) ≤ C (ε/ |x|)γ/(p+1)

for all x ∈ R
N\B(0, 2R0/ε), where C > 0 is a constant independent of y.

Let y ∈ R
N\B(0, 2R0/ε). From (8), the definition of χε and of the fact that

ūε and v̄ε are radially symmetric functions, we have
∫

B(y,2)

(αε)
(p+1)/(p−1)

Q(ūε, v̄ε)dx

≤ C

|y|N−1

∫

{x∈RN ||y|−2≤|x|≤|y|+2}

(αε)
(p+1)/(p−1)Q(ūε, v̄ε)dx

≤ C (ε/R0)
N−1

2γ (ε/ |y|)γ (αε)(p+1)/(p−1)
(66)

for some constant C > 0. Thus, from (Q2), (66) and Lemma 4 it follows that

(67)

∫

B(y,2)

(Uε)
p+1dx ≤ C (ε/ |y|)γ

for sufficiently small ε > 0 and for some positive constant C. Then, from (67)
and Theorem 9.20 in [26], we have that

sup
B(y,1)

Uε ≤ C0 (ε/ |y|)γ/(p+1) ≤ C1 (ε/ |x|)γ/(p+1)

for some constants C0, C1 > 0, for small ε > 0 and for any x ∈ B(y, 1). Hence,
(65) follows. We define

ωε ≡ − (N − 2) +
√

(N − 2)2 + 4λ/ε2

2
.
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Consequently, (ωε)
2
+ (N − 2)ωε − λ

ε2 = 0. Then, setting Ψε(x) = |x|ωε , we
conclude from condition (V ) that

−∆Ψε(x) + V (εx)Ψε(x) ≥ (2λ/ε2 − (ωε)
2 − (N − 2)ωε)r

ωε−2

=
λ

ε2 |x|2
Ψε(x) for |x| ≥ R0/ε.(68)

Using (65), (68) and the fact that γ(p− 1)/(p+ 1) > 2, we have

(69) −∆Ψε + V (εx)Ψε ≥ K(εx) (Uε)
p−1

Ψε

for all x ∈ R
N\B(0, 2R0/ε) and small ε > 0. From (64), we deduce that for

some C, c > 0,

(70) Uε ≤ C exp(−c/ε) in ∂B(0, 2R0/ε).

Let Ψ̃ε(x) = C exp(−c/ε)(2R0

ε )−ωεΨε(x). We claim that

(71) Uε(x) ≤ C exp(−c/ε)(2R0/ε)
−ωεΨε(x)

for all x ∈ R
N\B(0, 2R0/ε) and some constants C, c > 0. In fact, as a conse-

quence of (70), (Uε − Ψ̃ε)+ = 0 on ∂B(0, 2R0/ε). From (69), we note that

(72) −∆Ψ̃ε + V (εx)Ψ̃ε ≥ K(εx) (Uε)
p−1

Ψ̃ε

for all x ∈ R
N\B(0, 2R0/ε). As in [11], using (49) and (72) we see that

(73) −∆(Uε − Ψ̃ε) + V (εx)(Uε − Ψ̃ε) ≤ (Uε)
p−1

K(εx)(Uε − Ψ̃ε)

for all x ∈ R
N\B(0, 2R0/ε). Multiplying both sides of (73) by (Uε − Ψ̃ε)+ and

integrating by parts, we obtain
∫

RN\B(0,2R0/ε)

[|∇(Uε − Ψ̃ε)+|2 + V (εx)((Uε − Ψ̃ε)+)
2]dx

≤
∫

RN\B(0,2R0/ε)

(Uε)
p−1

K(εx)((Uε − Ψ̃ε)+)
2dx.(74)

Using (V ), (65) and the fact that γ(p− 1)/(p+1)− 2 > 0, we deduce that, for
some constants C0, C1 > 0,

(75)
K(εx)(Uε(x))

p−1 ≤ C0ε
γ(p−1)/(p+1) 1

|x|γ(p−1)/(p+1)−2

4λ

|x|2

≤ C1ε
γ(p−1)/(p+1)V (εx)

for all x ∈ R
N\B(0, 2R0/ε) and small ε > 0. (74) and (75) imply
∫

RN\B(0,2R0/ε)

[|∇(Uε − Ψ̃ε)+|2 + V (εx)((Uε − Ψ̃ε)+)
2]dx

≤ C1ε
γ(p−1)/(p+1)

∫

RN\B(0,2R0/ε)

V (εx)((Uε − Ψ̃ε)+)
2dx.

This implies that, for sufficiently small ε > 0, (Uε−Ψ̃ε)+=0 in R
N\B(0, 2R0/ε)

and the proof of (71) is over.
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Verification of (25). Indeed, from (Q2), (64) and Lemma 6, we infer that

Q(ūε, v̄ε) ≤ 2η2(ūε + v̄ε)
p+1

= C0(αε)
−(p+1)/(p−1)(Uε)

p+1

≤ Cε−2(p+1)/(p−1) exp(−c1/ε) in B(0, 3R0/ε− δ/ε)\A4δ
ε(76)

for small ε > 0 and for some constants c1, C0, C > 0. Thus, using the definition
of χε and (76) we see that

(77)

∫

B(0,R0/ε)\A4δ
ε

χε(x)Q(ūε, v̄ε)dx ≤ C3ε
−(2N−1)−5(p+1)/(p−1) exp(−c1/ε)

and
(78)
∫

B(0,2R0/ε)\B(0,R0/ε)

χε(x)Q(ūε, v̄ε)dx ≤ C4ε
−(2(p+1)/(p−1)+2γ+N) exp(−c1/ε)

for some constants C3, C4 > 0, independent of ε. Moreover, from (Q2), Lemma
6 and (71) it follows that, for some constants C5, c2 > 0,
(79)

Q(ūε, v̄ε) ≤ C5ε
−2(p+1)/(p−1) exp(−c2/ε)(2R0)

−(p+1)ωεε(p+1)ωε |x|(p+1)ωε

for all x ∈ R
N\B(0, 2R0/ε) and small ε > 0. Then, combining (79) with the

definition of χε, we have
∫

RN\B(0,2R0/ε)

χε(x)Q(ūε, v̄ε)dx

≤ C5 exp(−c2/ε)(2R0)
−(p+1)ωε

× ε−2(p+1)/(p−1)+(p+1)ωε−γ

∫

RN\B(0,2R0/ε)

|x|γ+(p+1)ωε dx

= C6
1

−γ − (p+ 1)ωε −N
(2R0)

γ+Nε−2(p+1)/(p−1)−2γ−N exp(−c2/ε)(80)

for some constant C6 > 0. From (77), (78), (80) and of the fact that χε ≡ 0 in
A4δ
ε , we deduce that

lim
ε→0

∫

RN

χε(x)Q(ūε, v̄ε)dx = 0.

This proves (25).
As a consequence of (25) we have βε = 0. Using (7), the homogeneity of

Q, Lemma 3 and (ūε, v̄ε) as test function in (Sαε, 0), we obtain Mε

p+1 = αε.

This implies that (uε, vε), where uε(x) = (αε)
1/(p−1)

ūε(ε
−1x) and vε(x) =

(αε)
1/(p−1)

v̄ε(ε
−1x), satisfies (S). Note that of (64) and (71), we have

(81) uε(x), vε(x) ≤ C exp(−cδ/ε) ∀x ∈ B(0, 2R0)\A4δ
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and

(82) uε(x), vε(x) ≤ C exp(−c/ε)(|x| /2R0)
ωε ∀x ∈ R

N\B(0, 2R0).

The property (1) is proved in Lemma 5. We now show the property (2), i.e.,

lim inf
ε→0

ε−2/(p−1) ‖uε + vε‖L∞(RN ) > 0.

We define Wε ≡ ε−2/(p−1)(uε + vε). Then, it suffices to show that

lim inf
ε→0

‖Wε‖L∞(RN ) > 0.

From (Q1) and of the fact that (uε, vε) is solution of (S) we see that, for some
C > 0,

(83) −∆Wε +
1

ε2
V (x)Wε ≤ CK(x)(Wε)

p in R
N .

Multiplying both sides of (83) by Wε and integrating by parts, we obtain

∫

RN

[|∇Wε|2 +
1

ε2
V (x)(Wε)

2]dx ≤ C

∫

RN

(Wε)
p+1dx

(84)

≤ C ‖Wε‖p−1
L∞(RN )

∫

A5δ

(Wε)
2dx+ C ‖Wε‖(p−1)/2

L∞(RN )

∫

RN\A5δ

(Wε)
(p−1)/2(Wε)

2dx.

Now, to conclude our proof once more, we will use the arguments developed by
Byeon-Wang in [17] and [18]. We take ϕ ∈ C∞

0 (int(A5δ)) such that ϕ(x) = 1 for
x ∈ A4δ. As infx∈supp(ϕ)\A4δ V (x) > 0 and infx∈A5δ\A4δ V (x) > 0, it follows,
by definition of ϕ and by the Poincaré inequality, that
∫

A5δ

(Wε)
2dx ≤ 2

∫

A5δ

[(ϕWε)
2 + (1− ϕ)2(Wε)

2]dx

≤ C0

∫

supp(ϕ)

|∇(ϕWε)|2 dx+ C1
1

ε2

∫

A5δ\A4δ

V (x)(Wε)
2dx

≤ C2
1

ε2

∫

supp(ϕ)\A4δ

V (x)(Wε)
2dx+ 2C0

∫

RN

|∇Wε|2 dx

+ C1
1

ε2

∫

A5δ\A4δ

V (x)(Wε)
2dx

≤ C

∫

RN

[|∇Wε|2 +
1

ε2
V (x)(Wε)

2]dx(85)

for some positive constants C0, C1, C2 and C, independent of small ε > 0. On
the other hand, using the Hölder inequality and Sobolev embedding results, we
get
(86)
∫

RN\A5δ

(Wε)
(p−1)/2(Wε)

2dx ≤ C(

∫

RN\A5δ

(Wε)
N(p−1)/4dx)2/N

∫

RN

|∇Wε|2 dx.
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In view of (81) and (82) we deduce that, for some constants C1, C2 > 0,

(87) Wε(x) ≤ C1ε
−2/(p−1) exp(−cδ/ε) ∀x ∈ B(0, 2R0)\A4δ

and

(88) Wε(x) ≤ C2ε
−2/(p−1) exp(−c/ε)(2R0)

−ωε |x|ωε ∀x ∈ R
N\B(0, 2R0).

From (87) and (88) we have, for some constants c1, c2, C3, C4, C5 > 0, that

∫

RN\A5δ

(Wε)
N(p−1)/4dx

(89)

≤ C3ε
−N/2 exp(−c1/ε) + C4ε

−N/2 exp(−c2/ε)(2R0)
−N(p−1)ωε/4

×
∫

RN\B(0,2R0)

|x|N(p−1)ωε/4 dx

= C3ε
−N/2 exp(−c1/ε) + C5ε

−N/2 exp(−c2/ε)(2R0)
N 1

−N(p− 1)ωε/4−N
.

From (89),
∫

RN\A5δ (Wε)
N(p−1)/4dx ≤ 1 for sufficiently small ε > 0. This and

(86) imply

(90)

∫

RN\A5δ

(Wε)
(p−1)/2(Wε)

2dx ≤ C

∫

RN

[|∇Wε|2 +
1

ε2
V (x)(Wε)

2]dx

for small ε > 0. From (84), (85) and (90) it follows that ‖Wε‖p−1
L∞(RN ) +

‖Wε‖(p−1)/2

L∞(RN )
≥ C for some positive constant C. Then ‖Wε‖L∞(RN ) ≥ C1 > 0,

where C1 is a constant independent of ε > 0. This completes the proof of
property (2).

Now, we claim that uε, vε ∈ W 1,2(RN ). In fact, from (81) and (82) we obtain
∫

RN

(uε)
2dx ≤

∫

A4δ

(uε)
2dx+ C0 exp(−c0/ε)

+ C1 exp(−c1/ε)(2R0)
−2ωε

∫

RN\B(0,2R0)

|x|2ωε dx

=

∫

A4δ

(uε)
2dx+ C0 exp(−c0/ε)

+ C2 exp(−c1/ε)(2R0)
N 1

−2ωε −N
(91)

for some constants C0, C1, C2, c0, c1 > 0. Using the Lemma 3 and change of
variables, we have

ε2
∫

RN

|∇uε(x)|2 dx = (αε)
2/(p−1)

∫

RN

|∇ūε(x/ε)|2 dx

= εN (αε)
2/(p−1)

∫

RN

|∇ūε(y)|2 dy
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≤ εN (αε)
2/(p−1) ‖(ūε, v̄ε)‖2ε

= (p+ 1) (αε)
(p+1)/(p−1)

εN .(92)

From (91) and (92) we conclude that uε ∈ W 1,2(RN ). Similarly, we obtain
vε ∈W 1,2(RN ). The decay property (3) follows from (81) and (82). �
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[19] , Standing waves with a critical frequency for nonlinear Schrödinger equations.

II, Calc. Var. Partial Differential Equations 18 (2003), no. 2, 207–219.
[20] D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, Theory of incoherent

self-focusing in biased photorefractive media, Phys. Rev. Lett. 78 (1997), 646–649.
[21] R. Cipolatti and W. Zumpichiatti, On the existence and regularity of ground states for

a nonlinear system of coupled Schrödinger equations in R
N , Comput. Appl. Math. 18

(1999), no. 1, 15–29.
[22] , Orbitally stable standing waves for a system of coupled nonlinear Schrödinger

equations, Nonlinear Anal. 42 (2000), no. 3, Ser. A: Theory Methods, 445–461.
[23] E. N. Dancer and S. Yan, A new type of concentration solutions for a singularly perturbed

elliptic problem, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1765–1790.
[24] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equa-

tion with a bounded potential, J. Funct. Anal. 69 (1986), no. 3, 397–408.
[25] B. D. Esry, C. H. Greene, J. P. Burke, Jr., and J. L. Bohn, Hartree-Fock theory for

double condensates, Phys. Rev. Lett. 78 (1997), 3594–3597.
[26] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,

2nd ed., Grundlehren Math. 224, Springer-Verlag, Berlin Heidelberg, 1983.
[27] A. Hasegawa and Y. Kodama, Solitions in Optical Communications, Academic Press,

San Diego, 1995.
[28] M. N. Islam, Ultrafast Fiber Switching Devices and Systems, Cambridge University

Press, New York, 1992.
[29] I. P. Kaminow, Polarization in optical fibers, IEEE J. Quantum Electron. 17 (1981),

15–22.
[30] E. H. Lieb and R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped

gases, Phys. Rev. Lett. 88 (2002), 170409.
[31] L. A. Maia, E. Montefusco, and B. Pellacci, Positive solutions for a weakly coupled

nonlinear Schrödinger system, J. Differential Equations 229 (2006), no. 2, 743–767.
[32] C. R. Menyuk, Nonlinear pulse propagation in birefringence optical fiber, IEEE J. Quan-

tum Electron. 23 (1987), 174–176.
[33] , Pulse propagation in an elliptically birefringent Kerr medium, IEEE J. Quan-

tum Electron. 25 (1989), 2674–2682.
[34] P. Meystre, Atom Optics, Springer-Verlag, New York, 2001.

[35] D. L. Mills, Nonlinear Optics, Springer-Verlag, Berlin, 1998.
[36] D. C. de Morais Filho and M. A. S. Souto, Systems of p-laplacean equations involv-

ing homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. Partial
Differential Equations 24 (1999), no. 7-8, 1537–1553.

[37] A. Pomponio, Coupled nonlinear Schrödinger systems with potentials, J. Differential
Equations 227 (2006), no. 1, 258–281.

Paulo Cesar Carrião
Departamento de Matemática
Universidade Federal de Minas Gerais
31270-010 Belo Horizonte(MG), Brazil
E-mail address: carrion@mat.ufmg.br



POSITIVE RADIAL SOLUTIONS FOR A CLASS OF ELLIPTIC SYSTEMS 865

Narciso Horta Lisboa
Departamento de Ciências Exatas
Universidade Estadual de Montes Claros
39401-089 Montes Claros(MG), Brazil
E-mail address: narciso.lisboa@unimontes.br

Olimpio Hiroshi Miyagaki
Departamento de Matemática
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