DOI QR코드

DOI QR Code

Effects of Inverse Lighting and Diet with Soy Oil on Growth Performance and Short Chain Fatty Acid of Broiler Exposed to Extreme Heat Stress

대두유 사료와 역전점등이 폭염 육계의 짧은 사슬지방산 및 성장능력에 미치는 영향

  • Yoon, Jae-Sung (Department of Animal Biotechnology, Kangwon National University) ;
  • Kang, Hwan-Ku (National Institute of Animal Science, RDA) ;
  • Ryu, Chae-Min (Department of Animal Biotechnology, Kangwon National University) ;
  • Park, Sang-Oh (Department of Animal Biotechnology, Kangwon National University) ;
  • Park, Byung-Sung (Department of Animal Biotechnology, Kangwon National University) ;
  • Hwangbo, Jong (National Institute of Animal Science, RDA) ;
  • Seo, Ok-Suk (National Institute of Animal Science, RDA) ;
  • Chae, Hyun-Seok (National Institute of Animal Science, RDA) ;
  • Choi, Hee-Chul (National Institute of Animal Science, RDA) ;
  • Choi, Yang-Ho (Department of Animal Science, Gyeongsang National University)
  • Received : 2013.02.17
  • Accepted : 2013.03.22
  • Published : 2013.03.30

Abstract

This study investigated the effects of feeding the broilers that are exposed to extreme heat stress (EHS, $33{\pm}2^{\circ}C$) with extreme heat stress diet (EHSD) containing adequate amount of soy oil and other nutrients on their growth performance. 500 broiler chickens (Ross 308) were randomized into five dietary treatment groups according to a randomized block design on the day they were hatched. Each group was further divided into four repeat pens with each repeat pen comprising 25 chickens. The five dietary treatment groups were: T1 (Normal ambient condition + basal diet (BD), T2 (EHS +BCD), T3 (EHS + extreme heat stress diet (EHSD) prepared from BD with tallow replaced with soy oil and containing molasses 2%), T4 (EHS + EHSD prepared from BD with tallow replaced with soy oil and containing molasses 2% and methionine and lysine of 1.5 times greater quantities than in BD), and T5 (EHS + EHSD prepared from BD with tallow replaced with soy oil and containing molasses 2%, methionine and lysine of 1.5 times greater quantities than in BD, and vitamin C 200 ppm) with inverse lighting. The body weight gain of the broilers increased significantly in T4 and T5 as compared with that in T1 and T2. Weights of the lymphoid organ, bursa of Fabricius, thymus, and spleen were similar between all groups. Serum concentrations of IgG, IgG and IgM were higher in T4 and T5 than inT1 and T2, but the corticosterone concentration decreased significantly in them. In T4 and T5, Lactobacillus in the cecum increased, but Escherichia, coliform, and total aerobic bacteria decreased rather significantly, compared with those in T1 and T2. Contents of acetic acid, propionic acid and total SCFA were significantly higher in T4 and T5 than in T1 and T2.

본 연구는 폭염 스트레스(extreme heat stress, EHS, $33{\pm}2^{\circ}C$)에 노출된 브로일러에서 대두유, 당밀, 아미노산, 비타민 C를 적절하게 함유하는 폭염사료 (extreme heat stress diet, EHSD)급여가 짧은 사슬지방산 및 성장능력에 미치는 영향을 조사하였다. 부화 당일 Ross 308 병아리 500 마리를 5처리구로 완전임의배치 하였다. 각 처리구는 4반복을 가졌으며 각 반복은 25마리씩 배치하였다. 처리구는 역전점등과 함께 T1 (일반환경+기초사료 basal diet, BD), T2 (EHS+BD), T3 (EHS+BD 내 우지를 대두유로 대체 및 당밀 2%를 함유하는 EHSD), T4 (EHS+BD 내 우지를 대두유로 대체, 당밀 2%, 메치오닌과 라이신을 각각 일반사료의 1.5배씩 함유하는 EHSD), T5 (EHS+BD 내 우지를 대두유로 대체, 당밀 2%, 메치오닌과 라이신을 각각 일반사료의 1.5배씩 추가 및 비타민 C 200 ppm을 함유하는 EHSD)로 구분하였다. 브로일러의 증체량은 T1, T2와 비교할 때 T4, T5에서 유의하게 증가하였다. 그리고 면역기관, F낭, 흉선, 비장의 무게는 서로 비슷하였다. 또한 혈청 IgG, IgA, IgM 농도는 T4, T5가 T1, T2에 비교할 때 높았으나 코르티코스테론 농도는 유의하게 낮아졌다. 특히 맹장의 Lactobacillus는 T4, T5가 T1, T2에 비해서 증가하였으나 Escherichia, Coliform, Total aerobic bacteria는 오히려 유의하게 감소하였다. 초산, 프로피온산 및 총 짧은 사슬지방산 함량은 T4, T5가 T1, T2와 비교할 때 유의하게 높았다.

Keywords

References

  1. A. A. Mendes, S. E. Watkins, J. E. England, E. A. Saleh, A. L. Waldroup, and P.W. Waldroup, Influence of dietary lysine levels and arginine:lysine ratios on performance of broilers exposed to heat or cold stress during the period of three to six weeks of age, Poult. Sci, 76, 472-481 (1997). https://doi.org/10.1093/ps/76.3.472
  2. J. D. May, B. D. Lott, and J. D. Simmons, The effect of environmental temperature and body weight on growth rate and feed: Gain of male broilers, Poult. Sci, 77, 499-501 (1998). https://doi.org/10.1093/ps/77.4.499
  3. W. M. Quinteiro-Filho, A. Ribeiro, V. Ferraz-de-Paula, M. L. Pinheiro, M. Sakai, L. R. S, A. J. Ferreira, and J. Palermo-Neto, Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens, Poult. Sci, 89, 1905-1914 (2011).
  4. F. N. Reece, and J. W. Daton, Use of a time-proportioning thermostat for control of poultry house environment, Poult. Sci, 50, 1622-1626 (1971).
  5. M. A. Cooper, and K. W. Washburn, The relationships of body temperature to weight gain, feed consumption, and feed utilization in broilers under heat stress, Poult. Sci, 77, 237-242 (1998). https://doi.org/10.1093/ps/77.2.237
  6. A. Donkoh, Ambient temperature:a factor affecting performance and physiological response of broiler chickens, Int. J. Biometeorol, 32, 259-265 (1989).
  7. A. Y. Han, M. H. Zhang, X. I. Zuo, C. F. Zhao, J. H. Feng, and C. Cheng, Effect of acute heat stress on calcium concentration , proliferation, cell cycle, and interlukin-2 production in splenic lymphocytes from broiler chickens, Poult. Sci, 89, 2063-2070 (2010). https://doi.org/10.3382/ps.2010-00715
  8. K. W. Washburn, R. Peavey, and G. M. Renwick, Relation of strain variation and feed restriction to variation in blood pressure response to heat stress, Poult. Sci, 59, 2586-2588 (1980). https://doi.org/10.3382/ps.0592586
  9. Z. Y. Niu, F. Z. Ilu, and Q. I. Yan, Effects of different levels of vitamin E on growth performance and immnune responses of broilers under heat stress, Poult. Sci, 88, 2101-2107 (2009). https://doi.org/10.3382/ps.2009-00220
  10. S. Temim, A. M. Chagneau, S. Guillaumin, J. Michel, R. Peresson, and S. Tesseraud, Does excess dietary protein improve growth performance and carcass characteristics in heat-exposed chickens, Poult. Sci, 79, 312-317 (2000). https://doi.org/10.1093/ps/79.3.312
  11. S. Leeson, and J. D. Summers, Commercial poultry nutrition. University books. Guelph. Ontario. NIH 6N8, Canada. (1991).
  12. R. Gonzalez-Esquerra, and S. Leeson, Effect of arginine:lysine ratios and source of methionine on growth and body protein accretion in acutely and chronically heat-stressed broilers, Poult. Sci, 85, 1594-1602 (2006). https://doi.org/10.1093/ps/85.9.1594
  13. C. D. Knight, C. W. Wuelling, C. A. Atwell, and J. J. Dibner, Effect of intermittent periods of high environmental temperature on broiler performance responses to sources of methionine activity, Poult. Sci, 73, 627-639 (1994). https://doi.org/10.3382/ps.0730627
  14. S. D. Sharifi, A. Dibamehr, H. Lotfollahian, and B. Baurhoo, Effects of flavomycin and probiotic supplementation to diets containing different sources of fat on growth performance, intestinal morphology, apparent metabolizable energy, and fat digestibility in broiler chickens, Poult. Sci, 91, 918-927 (2012). https://doi.org/10.3382/ps.2011-01844
  15. J. P. Jacob, and C. A. Carter, Inclusion of buckwheat in organic broiler diets, J. Appl. Poult. Res, 17, 522-528 (2008). https://doi.org/10.3382/japr.2008-00004
  16. J. S. McKee, P. C. Harrison, and G. L. Riskowski, Effects of supplemental ascorbic acid on the energy conversion of broiler chicks during heat stress and feed withdrawal, Poult. Sci, 76, 1278-1286 (1997). https://doi.org/10.1093/ps/76.9.1278
  17. National Research Council Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, DC. (1994).
  18. Scot PIL training manual. Glasgow Univ, UK. (1994).
  19. B. Close, K. Banister, V. Baumans, E. M. Bernoth, N. Bromage, J. Bunyan, W. Erhardt, P. Flecknell, N. Gregory, H. Hackbarth, D. Morton, and C. Warwick, Recommendations for euthanasia of experimental animals, Part 2. Laboratory animals, 31, 1-32 (1997). https://doi.org/10.1258/002367797780600297
  20. W. F. Zhang, D. F. Li, W. Q. Lu, and G. F. Yi, Effects of isomalto oligosaccharides on broiler performance and intestinal microflora, Poult. Sci, 82, 657-663 (2003). https://doi.org/10.1093/ps/82.4.657
  21. SAS, SAS/STAT User's Guide: Statistics. SAS Inst. Inc, Cary, NC. (2004)
  22. R. E. Austic, Feeding poultry in hot and cold climates. Pages 123-136 in Stress physiology in livestock. Vol. 3. M. K. Yousef. ed. CRC press. Boca Raton. FL. (1985).
  23. P. A. Geraert, J. C. F. Padilha, and S. Guillaumin, Metabolic and endocrine changes induced by chronic heat exposure in broiler chicks: Growth performance, body composition and energy retention, Br. J. Nutr, 63, 1697-1702. (1996).
  24. Y. Guo, G. Zhang, J. Yuan, and W. Nie, Effect of source and level of magnesium and vitamin E on prevention of hepatic peroxidation and oxidative deterioration od broiler meat, Anim. Feed Sci. Technol, 107, 143-150 (2003). https://doi.org/10.1016/S0377-8401(03)00116-0
  25. S. O. Park, J. Hwangbo, C. M. Ryu, J. S. Yoon, B. S. Park, H. K. Kang, O. S. Seo, H. S. Chae, H. C. Choi, Y. H. Choi, Effects of extreme heat stress and continuous lighting on growth performance and blood lipid in broiler chickens, Korean J. Oil Chem, In press (2013).
  26. M. Debut, C. Berri, E. Baeza, N. Sellier, C. Arnould, D. Guemene, N. Jehl, B. Boutten, Y. Jego, C. Beaumont, and E. Le Bihan-Duval. Variation of chicken technological meat quality in relation to genotype and preslaughter stress conditions, Poult. Sci, 82, 1829-1838 (2003). https://doi.org/10.1093/ps/82.12.1829
  27. J. R. Bartlett, and M. O. Smith, Effect of different levels of zinc on the performance and immunocompetence of broilers under heat stress, Poult. Sci, 82, 1580-1588 (2003). https://doi.org/10.1093/ps/82.10.1580
  28. S. Singh, H. Sodhi, and R. Kaur, Effects of dietary supplements of selenium, vitamin E or combination of the two on antibody response of broilers, Br. Poult. Sci, 47, 714-719 (2006). https://doi.org/10.1080/00071660601040079
  29. P. D. Schley, and C. J. Field, The immune-enhancing effects of dietary fibres and prebiotics, Br. J. Nutr, 87, S221-S230 (2002). https://doi.org/10.1079/BJN/2002541
  30. S. O. Park, and B. S. Park, Effect of dietary inuloprebiotics on performance, serum immunoglobulin and caecal microflora in broiler chickens, Kor. J. Organic Agric, 17, 539-555 (2009).
  31. D. A. Higgins, Physical and chemical properties of fowl immunoglobulins, The Vet. Bull, 45, 139-154 (1975).
  32. J. Bienenstock, J. Gauldie, and D. Y. E. Perey Synthesis of IgG, IgA, IgM by chicken tissues: Immunofluorescent and 14C amino acid incorporation studies, The J. Immun, 111, 1112-1118 (1973).
  33. Y. W. Wang, C. J. Field, and J. S. Sim, Dietary polyunsaturated fatty acids alter lymphocyte subset proportion and proliferation, serum immunoglobulin G concentration, and immune tissue development in chicks, Poult. Sci, 79, 1742-1748 (2000).
  34. B. Tizard, The avian antibody response, Seminars in Avian and Exotic Pet Medicine, 11, 2-14 (2002). https://doi.org/10.1053/saep.2002.28216
  35. S. Devaraj, S. Vega-Lopez, N. Kaul, F. Schonlau, P. Rohdewald, and I. Jialal, Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile, Lipids, 37, 931-934 (2002). https://doi.org/10.1007/s11745-006-0982-3
  36. G. R. Gibson, and X. Wang, Bifidogenic properties of different types of fructooligosaccharides, Food Microbiol, 11, 491-498 (1994). https://doi.org/10.1006/fmic.1994.1055
  37. G. R. Gibson, E. R. Bead, X. Wang, and J. H. Cummings, Selective stimulation of bifidobacteria in the human colon by oligofluctose and inulin, Gastroenterology, 108, 975-982 (1995). https://doi.org/10.1016/0016-5085(95)90192-2
  38. J. Gong, R. J. Forster, H. Yu, J. R. Chambers, P. M. Sabour, R. Wheatcroft, and S. Chen, Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen, FEMS Microbiol. Lett, 208, 1-7 (2002). https://doi.org/10.1111/j.1574-6968.2002.tb11051.x
  39. Z. R. Xu, C. H. Hu, and M. O. Wang, Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria, J. Gen. Appl. Microbiol, 48, 83-89 (2002). https://doi.org/10.2323/jgam.48.83
  40. M. R. Shakibaie, K. A. Jalilzadeh, and S. M. Yamakanamardi, Horizontal transfer of antibiotic resistance gene among gram negative bacteria in sewage and lake water and influence of some physico-chemical parameters of water on conjugation process, J. Environ. Biol, 30, 45-49 (2009).

Cited by

  1. 폭염 브로일러 닭의 혈액지질 및 짧은 사슬지방산에 대한 폭염사료와 역전점등 효과 vol.30, pp.3, 2013, https://doi.org/10.12925/jkocs.2013.30.3.400
  2. 혹서기 무창계사에서 육계의 혈액지질 및 짧은 사슬지방산에 관한 역전점등과 냉각수 효과 vol.31, pp.1, 2013, https://doi.org/10.12925/jkocs.2014.31.1.31
  3. 베타인이 폭염 오리의 짧은 사슬지방산 및 혈액 프로파일에 미치는 효과 vol.32, pp.3, 2013, https://doi.org/10.12925/jkocs.2015.32.3.394
  4. 폭염 하에서 음수 내 비타민 C와 트리메칠글리신 공급이 오리의 혈액 매개변수 및 생산성에 미치는 효과 vol.33, pp.3, 2016, https://doi.org/10.12925/jkocs.2016.33.3.411
  5. 폭염 하에서 음수 내 비타민 C와 트리메칠글리신 공급이 오리의 혈액 매개변수 및 생산성에 미치는 효과 vol.33, pp.3, 2016, https://doi.org/10.12925/jkocs.2016.33.3.411