DOI QR코드

DOI QR Code

Effects of extreme heat stress and continuous lighting on growth performance and blood lipid in broiler chickens

연속조명과 폭염 스트레스가 육계의 혈액지질 및 성장능력에 미치는 영향

  • Park, Sang-Oh (Department of Animal Biotechnology, Kangwon National University) ;
  • Hwangbo, Jong (National Institute of Animal Science, RDA) ;
  • Ryu, Chae-Min (Department of Animal Biotechnology, Kangwon National University) ;
  • Yoon, Jae-Sung (Department of Animal Biotechnology, Kangwon National University) ;
  • Park, Byung-Sung (Department of Animal Biotechnology, Kangwon National University) ;
  • Kang, Hwan-Ku (National Institute of Animal Science, RDA) ;
  • Seo, Ok-Suk (National Institute of Animal Science, RDA) ;
  • Chae, Hyun-Seok (National Institute of Animal Science, RDA) ;
  • Choi, Hee-Chul (National Institute of Animal Science, RDA) ;
  • Choi, Yang-Ho (Department of Animal Science, Gyeongsang National University)
  • Received : 2013.02.17
  • Accepted : 2013.03.23
  • Published : 2013.03.30

Abstract

In this study, the effect of extreme heat diet on growth performance, lymphoid organ, blood immunoglobulin and cecum microflora change in broilers exposed to continuous lighting and extreme heat stress (EHS) was studied. Broilers raised under normal environment temperature ($25^{\circ}C$ or extreme heat stress temperature ($33{\pm}2^{\circ}C$, and consumed chow diet (CD) or extreme heat stress diet (EHSD). Five hundred Ross 308 day-old commercial broilers were arranged in a completely randomized block design of 5 treatment groups with 4 repetitions (25 heads per repetition pen). The broilers were divided into: T1 (normal environment+CD), T2 (EHS+CD), T3 (EHS+EHSD in which the tallow in CD was substituted by soy oil and contained 5% molasses), T4 (EHS+EHSD in which the tallow in CD was substituted by soy oil and contained 5% molasses, and 1.5 times more methionine and lysine than CD), and T5 (EHS+EHSD in which the tallow in CD was substituted by soy oil, contained 5% molasses, 1.5 times more methionine and lysine than CD, and 300ppm of vitamin C). The EHS significantly reduced the body weight gain and feed intake. The blood immunoglobulin, bursa of Fabricius, thymus, and spleen weight were significantly reduced when broilers were exposed to EHS. Compared to the normal environment temperature group, the cecum Lactobacillus sp. was low in the EHS treatment group, while Escherichia sp., Salmonella sp. and total aerobic bacteria in the EHS treatment group were high. A statistically significant difference was acknowledged between the treatment groups.

본 연구는 연속조명과 함께 폭염 스트레스(extreme heat stress, EHS)에 노출된 브로일러에서 폭염사료 급여가 혈액지질, 성장능력, 면역기관, 혈청 면역물질, 맹장 미생물 변화에 미치는 영향을 조사하였다. 일반 환경온도 ($25^{\circ}C$) 또는 폭염스트레스 ($33{\pm}2^{\circ}C$)하에서 사육한 병아리는 일반사료(chow diet, CD)와 폭염사료(extreme heat diet, EHD)를 섭취하였다. 부화 당일 Ross 308 병아리 500 마리를 5 처리구 4 반복(반복 펜 당 25 마리)으로 완전임의배치 하였다. T1 (일반환경+CD), T2 (EHS+CD), T3 (EHS+CD 내 우지를 대두유로 대체 및 당밀 5%를 함유하는 EHD), T4 (EHS+CD 내 우지를 대두유로 대체, 당밀 5%, 메치오닌과 라이신을 각각 CD 의 1.5 배씩 함유하는 EHD), T5 (폭염+CD 내 우지를 대두유로 대체, 당밀 5%, 메치오닌과 라이신을 각각 CD 의 1.5 배씩 추가 및 비타민 C 300 ppm 을 함유하는 EHD)로 구분하였다. EHS 는 체중 및 사료섭취량을 유의하게 감소하였다. 혈액지질, 혈액 면역물질, F 낭, 흉선 그리고 비장의 무게는 브로일러를 EHS 에 노출하였을 때 유의하게 낮아졌다. 일반 환경온도 처리군과 비교할 때 EHS 처리군에서 맹장 Lactobacillus sp.는 낮았으나 Escherichia sp., Salmonella sp. 및 총호기성균은 높게 나타났으며 각 처리구 사이의 통계적인 유의차가 인정되었다.

Keywords

References

  1. Z. Y. Niu, F. Z. Ilu, and Q. I. Yan, Effects of different levels of vitamin E on growth performance and immnune responses of broilers under heat stress, Poult. Sci, 88, 2101 (2009). https://doi.org/10.3382/ps.2009-00220
  2. E. Austic, and M. C. Nesheim, Poultry production, Philadelphia, London. (1990).
  3. Y. Han, M. H. Zhang, X. I. Zuo, C. F. Zhao, J. H. Feng, and C. Cheng, Effect of acute heat stress on calcium concentration, proliferation, cell cycle, and interlukin-2 production in splenic lymphocytes from broiler chickens, Poult, Sci, 89, 2063 (2010). https://doi.org/10.3382/ps.2010-00715
  4. M. A. Cooper, and K. W. Washburn, The relationships of body temperature to weight gain, feed consumption, and feed utilization in broilers under heat stress, Poult. Sci, 77, 237 (1998). https://doi.org/10.1093/ps/77.2.237
  5. A. Donkoh, Ambient temperature: a factor affecting performance and physiological response of broiler chickens, Int. J. Biometeorol, 32, 259 (1989).
  6. K. W. Washburn, R. Peavey, and G. M. Renwick, Relation of strain variation and feed restriction to variation in blood pressure response to heat stress, Poult. Sci, 59, 2586 (1980). https://doi.org/10.3382/ps.0592586
  7. W. M. Quinteiro-Filho, A. Ribeiro, V. Ferraz-de-Paula, M. L. Pinheiro, M. Sakai, L. R. Sá, A. J. Ferreira, and J. Palermo-Neto, Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens, Poult. Sci, 89, 1905 (2011).
  8. Y. O. Suk, and K. W. Washburn, Effect of environment on growth, efficiency of feed utilization, carcass fatness, and their association, Poult. Sci, 74, 285 (1995). https://doi.org/10.3382/ps.0740285
  9. J. W. Deaton, F. N. Reece, B. D. Lott, L. F. Kubena and J. D. May, The efficiency of cooling broilers in summer as measured by growth and feed utilization, Poult. Sci, 51, 69 (1972). https://doi.org/10.3382/ps.0510069
  10. S. Leeson, and J. D. Summers, Commercial poultry nutrition. University books. Guelph. Ontario. NIH 6N8. Canada. (1991).
  11. Scot PIL training manual, Glasgow Univ. UK. (1994).
  12. National Research Council, Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, DC. (1994).
  13. S. O. Park, and B. S. Park, Effect of feeding the high levels of microcapsulated inulin on egg and blood lipid profile in laying hens, J. of Korean Oil Chemist's Soc, 29, 214 (2012).
  14. SAS, SAS/STAT User's Guide: Statistics. SAS Inst. Inc., Cary, NC. (2004).
  15. Y. Guo, G. Zhang, J. Yuan, and W. Nie, Effect of source and level of magnesium and vitamin E on prevention of hepatic peroxidation and oxidative deterioration of broiler meat. Anim, Feed Sci. Technol, 107, 143 (2003). https://doi.org/10.1016/S0377-8401(03)00116-0
  16. R. E. Austic, Feeding poultry in hot and cold climates. Pages 123-136 in Stress physiology in livestock. Vol. 3. M. K. Yousef. ed. CRC press. Boca Raton. FL. (1985).
  17. P. A. Geraert, J. C. F. Padilha, and S. Guillaumin, Metabolic and endocrine changes induced by chronic heat exposure in broiler chicks: Growth performance, body composition and energy retention, Br. J. Nutr, 63, 1697 (1996).
  18. J. W. Deaton, F. N. Reece, J. L. McNaughton, and B. D. Lott, Effect of light intensity and low-level intermittent lighting on broiler performance during a high density limited-area brooding period, Poult. Sci, 60, 2385 (1981). https://doi.org/10.3382/ps.0602385
  19. E. J. Apeldoorn, J. W. Schrama, M. M. Mashaly, and H. K. Parmentier, Effect of melatonin and lighting schedule on energy metabolism in broiler chickens, Poult. Sci, 78, 223 (1999). https://doi.org/10.1093/ps/78.2.223
  20. J. L. Campo, M. G. Gil, S. G. Dávila, and I. Muñoz, Effect of lighting stress on fluctuating asymmetry, heterophil-tolymphocyte ratio, and tonic immobility duration in eleven breeds of chickens, Poult. Sci, 86, 37 (2007). https://doi.org/10.1093/ps/86.1.37
  21. J. O. Mumma, J. P. Thaxton, Y. Vizzier-Thaxton, and W. L. Dodson, Physiological stress in laying hens, Poult. Sci, 85, 761 (2006). https://doi.org/10.1093/ps/85.4.761
  22. J. R. Bartlett, and M. O. Smith, Effect of different levels of zinc on the performance and immunocompetence of broilers under heat stress, Poult. Sci, 82, 1580 (2003). https://doi.org/10.1093/ps/82.10.1580
  23. S. Singh, H. Sodhi, and R. Kaur, Effects of dietary supplements of selenium, vitamin E or combination of the two on antibody response of broilers, Br. Poult. Sci, 47, 714 (2006). https://doi.org/10.1080/00071660601040079
  24. S. O. Park, and B. S. Park, Effect of dietary inuloprebiotics on performance, serum immunoglobulin and caecal microflora in broiler chickens, Kor. J. Organic Agric, 17, 539 (2009).
  25. D. A. Higgins, Physical and chemical properties of fowl immunoglobulins, The Vet. Bull, 45, 139 (1975).
  26. J. Bienenstock, J. Gauldie, and D. Y. E. Perey, Synthesis of IgG, IgA, IgM by chicken tissues: Immunofluorescent and 14C amino acid incorporation studies, The J. Immun, 111, 1112 (1973).
  27. Y. W. Wang, C. J. Field, and J. S. Sim, Dietary polyunsaturated fatty acids alter lymphocyte subset proportion and proliferation, serum immunoglobulin G concentration, and immune tissue development in chicks, Poult. Sci, 79, 1742 (2000).
  28. B. Tizard, The avian antibody response, Seminars in Avian and Exotic Pet Medicine, 11, 2 (2002). https://doi.org/10.1053/saep.2002.28216
  29. S. Devaraj, S. Vega-Lopez, N. Kaul, F. Schonlau, P. Rohdewald, and I. Jialal, Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile, Lipids, 37, 931 (2002). https://doi.org/10.1007/s11745-006-0982-3
  30. G. R. Gibson, and X. Wang, Bifidogenic properties of different types of fructooligosaccharides, Food Microbiol, 11, 491 (1994). https://doi.org/10.1006/fmic.1994.1055
  31. G. R. Gibson, E. R. Bead, X. Wang, and J. H. Cummings, Selective stimulation of bifidobacteria in the human colon by oligofluctose and inulin, Gastroenterology, 108, 975 (1995). https://doi.org/10.1016/0016-5085(95)90192-2
  32. J. Gong, R. J. Forster, H. Yu, J. R. Chambers, P. M. Sabour, R. Wheatcroft, and S. Chen, Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen, FEMS Microbiol. Lett, 208, 1 (2002). https://doi.org/10.1111/j.1574-6968.2002.tb11051.x
  33. Z. R. Xu, C. H. Hu, and M. O. Wang, Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria, J. Gen. Appl. Microbiol, 48, 83 (2002). https://doi.org/10.2323/jgam.48.83
  34. M. R. Shakibaie, K. A. Jalilzadeh, and S. M. Yamakanamardi, Horizontal transfer of antibiotic resistance gene among gram negative bacteria in sewage and lake water and influence of some physico-chemical parameters of water on conjugation process, J. Environ. Biol, 30, 45 (2009).

Cited by

  1. 폭염 브로일러 닭의 혈액지질 및 짧은 사슬지방산에 대한 폭염사료와 역전점등 효과 vol.30, pp.3, 2013, https://doi.org/10.12925/jkocs.2013.30.3.400
  2. 고콜레스테롤 랫드에서 파리유충 추출물의 혈액지질 감소기전 vol.31, pp.1, 2014, https://doi.org/10.12925/jkocs.2014.31.1.101
  3. 혹서기 무창계사에서 육계의 혈액지질 및 짧은 사슬지방산에 관한 역전점등과 냉각수 효과 vol.31, pp.1, 2013, https://doi.org/10.12925/jkocs.2014.31.1.31
  4. 베타인이 폭염 오리의 짧은 사슬지방산 및 혈액 프로파일에 미치는 효과 vol.32, pp.3, 2013, https://doi.org/10.12925/jkocs.2015.32.3.394
  5. 폭염 하에서 음수 내 비타민 C와 트리메칠글리신 공급이 오리의 혈액 매개변수 및 생산성에 미치는 효과 vol.33, pp.3, 2016, https://doi.org/10.12925/jkocs.2016.33.3.411
  6. Proteomic Analysis of the Protective Effect of Early Heat Exposure against Chronic Heat Stress in Broilers vol.10, pp.12, 2013, https://doi.org/10.3390/ani10122365
  7. The effect of intermittent feeding and cold water on performance and carcass traits of broilers reared under daily heat stress vol.33, pp.12, 2020, https://doi.org/10.5713/ajas.19.0980
  8. Early Heat Exposure Effects on Proteomic Changes of the Broiler Liver under Acute Heat Stress vol.11, pp.5, 2013, https://doi.org/10.3390/ani11051338