DOI QR코드

DOI QR Code

IT자산 장애처리의 사전 예측을 위한 기계학습 프로세스

Machine Learning Process for the Prediction of the IT Asset Fault Recovery

  • 투고 : 2012.10.15
  • 심사 : 2012.12.03
  • 발행 : 2013.04.30

초록

IT자산은 조직의 경영목적을 지원해주는 핵심영역이며, IT자산의 장애 발생시 신속한 처리를 지원하는 것은 매우 중요하다. 본 연구에서는 IT자산의 장애가 발생할 경우, 장애해결을 위하여 기존의 장애 데이터를 기초로 장애처리 예측 기법을 제시한다. 제안한 장애처리 예측 기법은 첫째, 기존의 장애처리 데이터를 전처리하여 장애처리 유형별로 분류하고 둘째, 분류된 장애처리 유형과 장애 발생 후 접수된 내용을 키워드 매핑시키는 규칙을 제정하였으며 셋째, 제정된 규칙에 의하여 장애 발생 후 장애처리 방법이 사전에 예측 가능한 기계학습 프로세스를 제시하였다. 제시한 기계학습 프로세스의 유효성을 입증하기 위하여 A사에서 6개월 동안 접수된 33,000여건의 전산기기 장애 데이터를 실험한 결과 장애처리 예측의 적중률이 약 72%였으며, 지속적인 기계학습을 통하여 81%로 향상되었다.

The IT asset is a core part that supports the management objective of an organization, and the fast settlement of the IT asset fault is very important. In this study, a fault recovery prediction technique is proposed, which uses the existing fault data to address the IT asset fault. The proposed fault recovery prediction technique is as follows. First, the existing fault recovery data were pre-processed and classified by fault recovery type; second, a rule was established for the keyword mapping of the classified fault recovery types and reported data; and third, a machine learning process that allows the prediction of the fault recovery method based on the established rule was presented. To verify the effectiveness of the proposed machine learning process, company A's 33,000 computer fault data for the duration of six months were tested. The hit rate for fault recovery prediction was approximately 72%, and it increased to 81% via continuous machine learning.

키워드

참고문헌

  1. Penny Grubb, Armstrong A Takang, "Software Maintenance Concepts and Practice", World Scientific, 2003.
  2. Daryl Mather, "The Maintenance Scorecard", Industrial Press, 2005.
  3. Matthew B. Doar, "Practical Development Environments", O'Reilly & Associates, 2005.
  4. Roger S. Pressman, "Software Engineering A Practitioner's Approach", McGraw-Hill, 2005.
  5. United Kingdoms Office Of Government Commerce, Information Technology Infrastructure Library Ver3 - Service Transition, The Stationery Office, 2008.
  6. IEEE, IEEE Std 1220-2008 - Systems and software engineering - Software life cycle processes, IEEE Computer Society, 2008.
  7. Y. K. Cho, Y. S. Hong, J. S. Lee, Algorithm, Ehan IT Books, 2006.
  8. K. Y. Lee, J. W. Kim, Algorithm, KNOU PRESS, 2012.
  9. K. H. Lee, B. R. Lee, Artificial Intelligence, KNOU PRESS, 2011.
  10. S. J. Kim, "The Machine Learning of making and learning", Hanbit Media, 2012.
  11. Young-Joon Moon, Sung-Yul Rhew, "A Study on Software Fault Analysis and Management Method using Defect Tracking System", KIPS Transactions on Part D, pp.321-326 1598-2866, 2008. https://doi.org/10.3745/KIPSTD.2008.15-D.3.321
  12. Hyo-Young Kim, Hyuk-Soo Han, "A Defect Prevention Model based on SW-FMEA", Journal of KISS, pp.605-614 1738-6322, 2006.
  13. Yun-Soo Choi, Sa-Kwang Song, Hong-Woo Chun, Chang- Hoo Jeong, Sung-Pil Choi, "Terminology Recognition System based on Machine Learning for Scientific Document Analysis", KIPS Transactions on Part D, pp.321-326 1598-2866, 2011. https://doi.org/10.3745/KIPSTD.2011.18D.5.329
  14. Hyung-Rim Choi, Kwang-Ryel Ryu, Jae-Ho Kang, Jong-Il Shin, Chang-Sup Lee, "An Automatic Question Routing System using Machine Learning", Spring Conference of KIISS, 2003.

피인용 문헌

  1. Software Replacement Time Prediction Technique Using the Service Level Measurement and Replacement Point Assessment vol.2, pp.8, 2013, https://doi.org/10.3745/KTSDE.2013.2.8.527