References
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Art. 4, 7 pp.
- L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), no. 1, 25-48.
- J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S. S. Jin and Y. H. Lee, A fixed point approach to the stability of the Cauchy additive and quadratic type functional equation, J. Appl. Math. 2011 (2011), Article ID 817079, 16 pages.
- S. S. Jin and Y. H. Lee, A fixed point approach to the stability of the quadratic-additive functional equation, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18 (2011), no. 4, 313-328. https://doi.org/10.7468/jksmeb.2011.18.4.313
- S. S. Jin and Y. H. Lee, A fixed point approach to the stability of the mixed type functional equation, Honam Math. J. 34 (2012), no. 1, 19-34. https://doi.org/10.5831/HMJ.2012.34.1.19
- K.-W. Jun and Y.-H. Lee, A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations. II, Kyungpook Math. J. 47 (2007), no. 1, 91-103.
- K.-W. Jun, Y.-H. Lee, and J.-R. Lee, On the stability of a new Pexider type functional equation, J. Inequal. Appl. 2008 (2008), ID 816963, 22 pages. https://doi.org/10.1155/2008/816963
- G.-H. Kim, On the stability of functional equations with square-symmetric operation, Math. Inequal. Appl. 4 (2001), no. 2, 257-266.
- H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), no. 1, 358-372. https://doi.org/10.1016/j.jmaa.2005.11.053
- Y.-H. Lee, On the Hyers-Ulam-Rassias stability of the generalized polynomial function of degree 2, J. Chuncheong Math. Soc. 22 (2009), no. 2, 201-209.
- Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), no. 2, 397-403. https://doi.org/10.4134/BKMS.2008.45.2.397
- Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), no. 1, 305-315. https://doi.org/10.1006/jmaa.1999.6546
- Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl. 246 (2000), no. 2, 627-638. https://doi.org/10.1006/jmaa.2000.6832
- Y. H. Lee and K. W. Jun, A note on the Hyers-Ulam-Rassias stability of Pexider equation, J. Korean Math. Soc. 37 (2000), no. 1, 111-124.
- Y. H. Lee and K. W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1361-1369. https://doi.org/10.1090/S0002-9939-99-05156-4
- Y. H. Lee and S. M. Jung, A fixed point approach to the stability of an n-dimensional mixed-type additive and quadratic functional equation, Abstr. Appl. Anal. 2012 (2012), Article ID 482936, 14 pages.
- Y. H. Lee and S. M. Jung, A fixed point approach to the generalized Hyer-Ulam stability of a mixed type functional equation, Int. J. Pure Appl. Math. 81 (2012), no. 2, 359-375.
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979.
- S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.
Cited by
- STABILITY OF A GENERALIZED POLYNOMIAL FUNCTIONAL EQUATION OF DEGREE 2 IN NON-ARCHIMEDEAN NORMED SPACES vol.26, pp.4, 2013, https://doi.org/10.14403/jcms.2013.26.4.887