DOI QR코드

DOI QR Code

Structural and Electrical Properties of SrRuO3 thin Film Grown on SrTiO3 (110) Substrate

  • Kwon, O-Ung (Department of Physics, Hankuk University of Foreign Studies) ;
  • Kwon, Namic (Department of Physics, Hankuk University of Foreign Studies) ;
  • Lee, B.W. (Department of Physics, Hankuk University of Foreign Studies) ;
  • Jung, C.U. (Department of Physics, Hankuk University of Foreign Studies)
  • Received : 2013.01.17
  • Accepted : 2013.03.07
  • Published : 2013.03.31

Abstract

We studied the structural and electrical properties of $SrRuO_3$ thin films grown on $SrTiO_3$ (110) substrate. High resolution X-ray diffraction measurement of the grown film showed 1) very sharp peaks for $SrRuO_3$ film with a very narrow rocking curve with FWHM = $0.045^{\circ}$ and 2) coherent growth behavior having the same in-plane lattice constants of the film as those of the substrate. The resisitivity data showed good metallic behavior; ${\rho}$ = 63(205) ${\mu}{\Omega}{\cdot}cm$ at 5 (300) K with a residual resistivity ratio of ~3. The observed kink at ${\rho}(T)$ showed that the ferromagnetic transition temperature was ~10 K higher than that of $SrRuO_3$ thin film grown on $SrTiO_3$ (001) substrate. The observed rather lower RRR value could be partially due to a very small amount of Ru vacancy generally observed in $SrRuO_3$ thin films grown by PLD method and is evident in the larger unit-cell volume compared to that of stoichiometric thin film.

Keywords

References

  1. G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C. B. Eom, D. H. A. Blank, and M. R. Beasley, Rev. Mod. Phys. 84, 253 (2012). https://doi.org/10.1103/RevModPhys.84.253
  2. A. P. Mackenzie, J. W. Reiner, A. W. Tyler, L. M. Galvin, S. R. Julian, M. R. Beasley, T. H. Geballe, and A. Kapitulnik, Phys. Rev. B 58, R13, 318 (1998).
  3. L. Klein, J. S. Dodge, C. H. Ahn, J. W. Reiner, L. Mieville, T. H. Geballe, M. R. Beasley, and A. Kapitulnik, J. Phys.: Condens. Mater 8, 10111 (1996). https://doi.org/10.1088/0953-8984/8/48/026
  4. Q. Gan, R. A. Rao, C. B. Eom, J. L. Garrett, and Mark Lee, Appl. Phys. Lett. 72, 978 (1998). https://doi.org/10.1063/1.120603
  5. B. W. Lee and C. U. Jung J. Kor. Phys. Soc. 6, 795 (2012).
  6. C. U. Jung, H. Yamada, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 84, 2590 (2004). https://doi.org/10.1063/1.1695195
  7. B. W. Lee and C. U. Jung, J. Kor. Phys. Soc. 59, 322 (2011). https://doi.org/10.3938/jkps.59.322
  8. B. W. Lee and C. U. Jung, Appl. Phys. Lett. 96, 102507 (2010). https://doi.org/10.1063/1.3334727
  9. W. Hong, H. N. Lee, M. Yoon, H. M. Christen, D. H. Lowndes, Z. Suo, and Z. Zhang, Phys. Rev. Lett. 95, 095501 (2005). https://doi.org/10.1103/PhysRevLett.95.095501
  10. M. Yoon, H. N. Lee, W. Hong, H. M. Christen, Z. Zhang, and Z. Suo, Phys. Rev. Lett. 99, 055503 (2007). https://doi.org/10.1103/PhysRevLett.99.055503
  11. M. A. Lopez de la Torre, Z. Sefroui, D. Arias, M. Varela, J. E. Villegas, C. Ballesteros, C. Leon, and J. Santamaria, Phys. Rev. B 63, 052403 (2001). https://doi.org/10.1103/PhysRevB.63.052403
  12. W. Siemons, G. Koster, A. Vailionis, H. Yamamoto, D. H. A. Blank, and M. R. Beasley, Phys. Rev. B 76, 075126 (2007). https://doi.org/10.1103/PhysRevB.76.075126