Abstract
In this paper, we present an effective method and a system for the music summarization which automatically extract the chorus portion of a piece of music. A music summary technology is very useful for browsing a song or generating a sample music for an online music service. To develop the solution, conventional automatic music summarization methods use a 2-dimensional similarity matrix, statistical models, or clustering techniques. But our proposed method extracts the music summary by calculating BER(Bit Error Rate) between audio fingerprint blocks which are extracted from a song. But we could directly use an enormous audio fingerprint database which was already saved for a music retrieval solution. This shows the possibility of developing a various of new algorithms and solutions using the audio fingerprint database. In addition, experiments show that the proposed method captures the chorus of a song more effectively than a conventional method.
본 논문은 음악의 코러스(chorus) 구간을 자동으로 추출하는 기법 및 시스템에 대하여 다루었다. 코러스 구간을 자동으로 추출하는 음악 요약 기술은 방대한 음악 데이터베이스에서 특정 음악 검색을 용이하게 할 수 있으며, 온라인 스트리밍 서비스에서 샘플 음악을 생성할 때 사용될 수 있다. 이를 구현하기 위해, 기존의 알고리즘들은 2차원 유사도 행렬, 확률모델, 신경망모델, 템포 특징 벡터, 클러스터링 기법 등을 적절히 활용하여 개발되었다. 본 논문에서는 음악의 오디오 핑거프린트를 추출한 후 곡 내의 오디오 핑거프린트 구간 쌍의 비트에러율을 통해 음악 요약을 추출한다. 다만, 음악 검색 솔루션에서 사용된 오디오 핑거프린트가 데이터베이스에 이미 존재할 경우에는 이를 바로 로딩한 후 비트에러율을 계산하여 음악 요약을 추출할 수 있다. 이런 방법은 이미 만들어진 데이터베이스를 변형 없이 그대로 사용할 수 있음으로써 음악 데이터베이스를 활용한 다양한 알고리즘과 솔루션의 가능성을 보여주었다. 또한, 음악의 코러스를 추출하는데 있어서 기존 방식보다 매우 뛰어난 성능을 보임을 알 수 있었다.