References
- Auyeung, Y.B., Balaguru, P. and Chung, L. (2000), "Bond behavior of corroded reinforcement bars", ACI Mater. J., 97(2), 214-221.
- Bertolini, L., Elsener, B., Pedeferri, P. and Polder, R.B. (2004), Corrosion of steel in concrete: prevention, diagnosis, repair, Wiley-VCH.
- Calvi, M.G., Pavese, A., Rasulo, A. and Bolognini, D. (2005), "Experimental and numerical studies on the seismic response of R.C. hollow bridge piers", B. Earthq. Eng., 3(3), 267-297. https://doi.org/10.1007/s10518-005-2240-0
- Cardone, D., Dolce, M., Pardi L., Perrone, G. and Sofia, S. (2010), "Pseudodynamic and cyclic tests on reduced-scale pier-deck sub-systems", Proc. of the IABMAS, Pennsylvania, USA.
- CEB. (1993), CEB-FIP model code 1990 - Design Code, Comite Euro - International du Beton, Thomas Telford, London.
- CEN, prEN1998-2. (2003), EC8: Design provisions for earthquake resistance of structures. Part 2:Bridges.
- Cervenka, J. and Papanikolaou, V.K. (2008), "Three dimensional combined fracture-plastic material for concrete", Int. J. Plasticity, 24(12), 2192-220. https://doi.org/10.1016/j.ijplas.2008.01.004
- Choe, D., Gardoni, P., Rosowsky, V.D. and Haukaas, T. (2009), "Seismic fragility estimates for reinforced concrete bridges subject to corrosion", Struct. Saf., 31(4), 275-283. https://doi.org/10.1016/j.strusafe.2008.10.001
- Computer and Structures, inc. (2005), SAP2000 Advanced: Static and dynamic analysis finite element analysis of structures, University Ave. Berkeley, CA.
- Delgado, P., Monteiro, A., Arêde, A., Vila Pouca, N., Delgado, R. and Costa, A. (2011), "Numerical simulations of RC hollow piers under horizontal cyclic loading", J. Earthq. Eng., 15(6), 833-849. https://doi.org/10.1080/13632469.2010.545863
- Eligehausen, R., Popov, E.P. and Bertero, V.V. (1983), "Local bond stress-slip relationships of deformed bars under generalized excitations", Report to the National Science Foundation, College of Engineering, University of California at Berkeley, no. UCB/EERC - 83/23.
- Faria, R., Oliver, J. and Cervera, M. (1998), "A strain based plastic viscous damage model for massive concrete structures", Int. J. Solids Struct., 35(14), 1533-1558. https://doi.org/10.1016/S0020-7683(97)00119-4
- Ghosh, J. and Padgett, J.E. (2012), "Impact of multiple component deterioration and exposure conditions on seismic vulnerability of concrete bridges", Earthq. Struct., 3(5), 649-673. https://doi.org/10.12989/eas.2012.3.5.649
- Jacobsen, L.S. (1930), "Steady forced vibrations as influenced by damping", Trans.-ASME, 51, 227.
- Kang, H.D., Willam, K., Shing, B. and Spacone, E. (2000), "Failure analysis of R/C columns, using a triaxial concrete model", Comput. Struct., 77(5), 423-440. https://doi.org/10.1016/S0045-7949(00)00006-7
- Kent, D.C. and Park, R. (1971), "Flexural members with confined concrete", Struct. Div.-ASCE, 1971, 97(7), 1969-1990.
- Kim, I., Lim, H., Jhun, G. and Kim, J. (2000), "Cyclic loading test of small scale bridge pier models without seismic detailing", Proc. 12th WCEE, Auckland, New Zealand.
- Kwon, M. and Spacone, E. (2000), "Three-dimensional finite element analyses of reinforced concrete columns", Comput. Struct., 80(2), 199-212.
- Liu, J. and Foster, S.J. (2000), "A three-dimensional finite element model for confined concrete structures", Comput. Struct., 77(5), 441-451. https://doi.org/10.1016/S0045-7949(00)00007-9
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Div.-ASCE, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
- McKenna, F., Fenves, G.L. and Scott, M.H. (2000), "Open system for earthquake engineering simulation", http://opensees.berkeley.edu.
- Menegotto, M. and Pinto, P.E. (1973), "Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under normal force and bending", Preliminary Report, IABSE, 13, 15-22.
- Neuenhofer, A. and Filippou, F.C. (1997), "Evaluation of nonlinear frame finite-element models", J. Struct. Eng., 123(7), 958-966. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)
- Neuenhofer, A. and Filippou, F.C. (1998), "Geometrically nonlinear flexibility-based frame finite element", J. Struct. Eng., 124(6), 704-711. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(704)
- Papanikolaou, V.K. and Kappos, A.J. (2009a), "Numerical study of confinement effectiveness in solid and hollow reinforced concrete bridge piers: Methodology", Comput. Struct., 87(21-22), 1427-1439. https://doi.org/10.1016/j.compstruc.2009.05.004
- Papanikolaou, V.K. and Kappos, A.J. (2009b), "Numerical study of confinement effectiveness in solid and hollow reinforced concrete bridge piers: Analysis results and discussion", Comput. Struct., 87(21-22), 1440-1450. https://doi.org/10.1016/j.compstruc.2009.05.005
- Pinto, A.V., Molina, J. and Tsionis, G. (2003), "Cyclic tests on large-scale models of existing bridge piers with rectangular hollow cross-section", Earthq. Eng. Struct. D., 32(13), 1995-2012. https://doi.org/10.1002/eqe.311
- Priestley, M.J.N, Calvi, G.M. and Kowalski, M. (2007), Displacement based seismic design of structures, IUSS Press, Pavia.
- Ranf, R.T. and Eberhard, M.O. (2004), "Development of 3-dimensional strain penetration analytical model in OpenSees", University of Washington, http://www.ce.washington.edu.
- Ranzo, G. and Priestley, M.J.N. (2001), Seismic performance of circular hollow columns subjected to high shear, The University of California, Report No. SSRP 2001/01.
- Rinaldi, Z., Valente, C. and Pardi, L. (2007), "A simplified methodology for the evaluation of the residual life of corroded elements", Struct. Infrastruct. Eng., 4(2), 139-152.
- Sadrnejad, S.A. and Labibzadeh, M. (2006), "A continuum/discontinuum micro plane damage model for concrete", Int. J. Civil Eng., 4(4), 296-313.
- Stewart, M.G. and Rosowsky, V.D. (1998), "Time-dependent reliability of deteriorating reinforced concrete bridge decks", Struct. Saf., 20(1), 91-109. https://doi.org/10.1016/S0167-4730(97)00021-0
- Thoft-Christensen, P. (1998), "Assessment of the reliability pro-files for concrete bridges", Eng. Struct., 20(11), 1004-1009. https://doi.org/10.1016/S0141-0296(97)00196-X
- Whittaker, D., Park., R. and Carr, A.J. (1987), "Experimental tests on hollow circular concrete columns for use in offshore concrete platforms", Proceedings, Pacific Conference on Earthquake Engineering, New Zealand, 1, 213-224.
- Yeh, Y.K., Mo, Y.L. and Yang, C.Y. (2001), "Seismic performance of hollow circular bridge piers", ACI Struct. J., 98(6), 862-871.
- Yeh, Y.K., Mo, Y.L. and Yang, C.Y. (2002), "Full-scale tests on rectangular hollow bridge piers", Mater. Struct., 34(246), 117-125.
- Zahn, F.A., Park, R. and Priestley, M.J.N. (1990), "Flexural strength and ductility of circular hollow reinforced concrete columns without confinement on inside face", ACI Struct. J., 87(2), 156-166.
Cited by
- Cyclic Behavior of Corroded Reinforced Concrete Bridge Piers vol.22, pp.7, 2017, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001043
- Experimental investigation on the cyclic behaviors of corroded coastal bridge piers with transfer of plastic hinge due to non-uniform corrosion vol.102, 2017, https://doi.org/10.1016/j.soildyn.2017.08.019
- Experimental evaluation of the corrosion influence on the cyclic behaviour of RC columns vol.76, 2014, https://doi.org/10.1016/j.engstruct.2014.06.043
- Hollow precast segmental prestressed concrete bridge columns with a shear resistant connecting element vol.44, pp.6, 2017, https://doi.org/10.1139/cjce-2016-0276
- Numerical evaluation of the corrosion influence on the cyclic behaviour of RC columns vol.153, 2017, https://doi.org/10.1016/j.engstruct.2017.10.020
- A modelling approach for existing shear-critical RC bridge piers with hollow rectangular cross section under lateral loads pp.1573-1456, 2019, https://doi.org/10.1007/s10518-018-0429-2
- Influence of Non-uniform corrosion of steel bars on the seismic behavior of reinforced concrete columns vol.167, pp.None, 2013, https://doi.org/10.1016/j.conbuildmat.2018.01.149
- Investigations on the behaviour of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading vol.16, pp.2, 2013, https://doi.org/10.12989/eas.2019.16.2.235
- Numerical analysis of hysteretic behavior for RAC structure under earthquake loading vol.18, pp.4, 2019, https://doi.org/10.1080/13467581.2019.1645671
- Modelling Strategies for the Numerical Simulation of the Behaviour of Corroded RC Columns under Cyclic Loads vol.11, pp.20, 2013, https://doi.org/10.3390/app11209761
- Hysteretic Model for Corroded Rectangular Reinforced Concrete Bridge Column Under Seismic Loading vol.26, pp.6, 2021, https://doi.org/10.1007/s12204-021-2282-8