DOI QR코드

DOI QR Code

Mode II Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Types of Non-woven Tissues

종류가 다른 부직포가 삽입된 하이브리드 복합재료의 모드 II 층간파괴인성

  • 정종설 (서울과학기술대학교 NID 융합기술대학원) ;
  • 정성균 (서울과학기술대학교 기계.자동차공학과)
  • Received : 2013.02.20
  • Accepted : 2013.04.05
  • Published : 2013.04.30

Abstract

The mode II interlaminar fracture toughness was evaluated for CFRP laminates with different types of nonwoven tissues and the source of increased mode II interlaminar fracture toughness was examined by SEM analysis in this paper. The interlaminar fracture toughness in mode II is obtained by an end notched flexure test. The experiment is performed using three types of non-woven tissues: 8 $g/m^2$ of carbon tissue, 10 $g/m^2$ of glass tissue, and 8 $g/m^2$ of polyester tissue. On the basis of the specimen with no non-woven tissue, interlaminar fracture toughness on mode II at specimens inserted with non-woven carbon and glass tissues and polyester tissues increases as much as 166.5% and 137.1% and 157.4% respectively. The results show that mode II interlaminar fracture toughness of CFRP laminates inserted with nonwoven tissues increased due to the fiber bridging, fiber breakage, and hackle etc. by SEM analysis.

본 연구에서는 CFRP 적층판에 다양한 종류의 부직포를 삽입하여 모드 II 층간파괴인성을 평가하고, 파단면의 SEM 분석을 통해 층간파괴인성의 증가 원인을 파악하였다. 모드 II 층간파괴인성값($J/m^2$)은 ENF실험에 의하여 얻어졌으며, 부직포를 삽입하지 않은 시편과 3종류의 부직포(8 $g/m^2$의 탄소부직포, 10 $g/m^2$의 유리부직포, 8 $g/m^2$의 폴리에스테르부직포)가 각각 삽입된 시험편들이 준비되었다. 각 시험편들에 대한 모드 II 층간파괴인성값은 부직포를 삽입하지 않은 시편을 기준으로 탄소부직포를 삽입한 시편은 197.7% 증가하였고, 유리부직포를 삽입한 시편은 약 135.4% 증가하였으며, 폴리에스테르부직포를 삽입한 시편은 약 158.7% 증가하였다. 부직포 삽입에 의한 모드 II 층간파괴인성값의 증가 원인은 SEM 분석에 의한 결과 단섬유의 섬유가교(Fiber bridging), 섬유파단(Fiber breakage), 헥클(Hackle) 등의 발생에 기인된 것으로 확인되었다.

Keywords

References

  1. Hu, W., Han, I.S., Park, S.-C., and Choi, D.-H., "Multi-objective Structural Optimization of a HAWT Composite Blade Based on Ultimate Limit State Analysis," Journal of Mechanical Science and Technology, Vol. 26, No. 1, 2012, pp. 129-135. https://doi.org/10.1007/s12206-011-1018-3
  2. Kim, J.K., Baillie, C., Poh, J., and Mai, Y.W., "Fracture Toughness of CFRP with Modified Epoxy Resin Materials," Composites Science Technology, Vol. 43, 1992, pp. 283-297. https://doi.org/10.1016/0266-3538(92)90099-O
  3. Odagiri, N., Kishi, H., and Yamashita, M., "Development of Torayca Prepreg P2302 Carbon Fiber Reinforced Plastic for Aircraft Primary Structural Materials," Advanced Composite Materials (in Japan), Vol. 5, 1996, pp. 249-252. https://doi.org/10.1163/156855196X00301
  4. Ozdil, F., and Carlsson, L.A., "Mode I Interlaminar Fracture of Interleaved Graphite/Epoxy," Journal of Material Science, Vol. 26, 1992, pp. 432-459.
  5. Ishai, O., Rosenthal, H., Sela, N., and Drukker, E., "Effect of Selective Adhesive Interleaving on Interlaminar Fracture Toughness of Graphite/Epoxy Composite Laminates," Composite (A), Vol. 19, 1988, pp. 49-54. https://doi.org/10.1016/0010-4361(88)90543-5
  6. Yamashita, S., Hatta, H., Takei, T., and Sugano, T., "Interlaminar Reinforcement of Laminated Composites by Addition of Orientated Whiskers in the Matrix," Journal of Composite Materials, Vol. 26, 1992, pp. 1254-1268. https://doi.org/10.1177/002199839202600902
  7. Mouritz, A.P., "Review of Z-pinned Composite Laminates," Composite: Part A, Vol. 38, 2007, pp. 2383-2397. https://doi.org/10.1016/j.compositesa.2007.08.016
  8. Choi, I.H., Ahn, S.M., Yeom, C.H., Hwang, I.H., and Lee, D.S., "Impact Resistance of Composite Laminates Manufactured by New z-Pinning Technique," The Korean Society for Aeronautical and Space Science, Vol. 37, 2009, pp. 693-700. https://doi.org/10.5139/JKSAS.2009.37.7.693
  9. Lee, B.H., Park, Y.B., Kweon, J.H., Choi, J.H., Choi, I.H., and Chang, S.T., "Strength of Stainless Steel Pin-reinforced Composite Single-lap Joints," The Korean Society for Composite Materials, Vol. 25, 2012, pp. 65-69. https://doi.org/10.7234/kscm.2012.25.3.065
  10. Lee, S.H., Noguchi, H., Kim, Y.B. and Cheong, S.K., "Effect of Interleaved Non-Woven Carbon Tissue on Interlaminar Fracture Toughness of Laminated Composites: Part I-Mode II," Journal of Composite Materials, Vol. 36, 2002, pp. 2153-2168. https://doi.org/10.1177/0021998302036018981
  11. Lee, S.H., Noguchi, H., Kim, Y.B., and Cheong, S.K., "Effect of Interleaved Non-Woven Carbon Tissue on Interlaminar Fracture Toughness of Laminated Composites: Part II-Mode I," Journal of Composite Materials, Vol. 36, 2002, pp. 2169-2181. https://doi.org/10.1177/0021998302036018980
  12. Jeong, J.-S., and Cheong, S.-K., "Interlaminar Fracture Toughness of CFRP Laminates with Silk Fibers Interleave," Journal of Mechanical Science and Technology, 2012. (submit)
  13. Jeong, J.-S., and Cheong, S.-K., "Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Kinds of Nonwoven Tissues : Part I-Mode I," Trans. of the KSME, Vol. 37, No. 4, 2013, pp. 497-502.
  14. Jeong, J.S., Lee, S.H., and Cheong, S.K., "Interlaminar Fracture Toughness of CFRP Composite Laminates with Carbon Nonwoven Tissue under High and Low Temperature," The Korean Society for Composite Materials, 2010, pp. 222-225.
  15. Cheong, S.K., "Interlaminar Fracture Toughness of CFRP Laminates With Carbon Non-woven Tissue Having Different Weight," The Korean Society for Composite Materials, 2009, pp. 43-48.
  16. JIS K7086, Testing Methods for Interlaminar Fracture Toughness of Carbon Fiber Reinforced Plastics, 1993. (in Japanese)

Cited by

  1. Evaluation of Fracture Behavior of Adhesive Layer in Fiber Metal Laminates using Cohesive Zone Models vol.29, pp.2, 2016, https://doi.org/10.7234/composres.2016.29.2.045
  2. Interfacial properties of aramid/basalt fiber reinforced hybrid composites by addition of Halloysite nanotube vol.33, pp.14, 2019, https://doi.org/10.1142/s0217984919400311