DOI QR코드

DOI QR Code

2차원 열전도 문제에 대한 Fast Multipole 경계요소법의 이론과 실행 알고리즘의 분석

Algorithm and Implementation of Fast Multipole Boundary Element Method with Theoretical Analysis for Two-Dimensional Heat Conduction Problems

  • 최창용 (전주대학교 기계자동차공학과)
  • 투고 : 2012.07.09
  • 심사 : 2013.02.05
  • 발행 : 2013.05.01

초록

본 논문에서는 조밀한 계수행렬로 인해 경계요소 개수의 증가에 따른 계산 시간의 급격한 증가때문에 대규모 문제를 쉽게 다룰 수 없는 기존 BEM 문제를 획기적으로 개선하는 새로운 BEM 해법인 FM-BEM을 소개한다. 단순한 2차원 정상상태 열전도문제를 통해서 FM-BEM과 기존 BEM의 계산시간과 정확도에 대한 해석 결과를 제시하였으며, 이로부터 FM-BEM 해법이 기존 BEM과 유사한 정확도를 유지하면서도 계산 속도를 획기적으로 높인다는 결과를 확인하였다. 결과적으로 본 연구에서는 FM-BEM의 적용 이론 및 관련 실행 알고리즘들을 고찰하고 이를 통해서 FM-BEM의 효용성을 검증하였으며, 향후 다양한 공학적 문제로의 적용 범위를 확대하고자 한다.

This paper presents the fast multipole boundary element method (FM-BEM) as a new BEM solution methodology that overcomes many disadvantages of conventional BEM. In conventional BEM, large-scale problems cannot be treated easily because the computation time increases rapidly with an increase in the number of boundary elements owing to the dense coefficient matrix. Analysis results are obtained to compare FM-BEM with conventional BEM in terms of computation time and accuracy for a simple two-dimensional steady-state heat conduction problem. It is confirmed that the FM-BEM solution methodology greatly enhances the computation speed while maintaining solution accuracy similar to that of conventional BEM. As a result, the theory and implementation algorithm of FM-BEM are discussed in this study.

키워드

참고문헌

  1. Brebbia, C. A., Telles, J. E. and Wrobel, L. C., 1984, Boundary Element Techniques, Springer- Verlag, New York, NY.
  2. Banerjee, P. K., 1994, The Boundary Element Methods in Engineering, 2nd ed., McGraw-Hill, UK.
  3. Choi, C. Y. and Cho, J. C., 2003, "BEM Solution with Minimal Energy Technique for the Geometrical Inverse Heat Conduction Problem in a Doubly Connected Domain," ASME J. of Pressure Vessel Technology, Vol. 125, pp. 109-117. https://doi.org/10.1115/1.1523890
  4. Choi C. Y., 2006, "A Boundary Element Solution Approach for the Conjugate Heat Transfer Problem in Thermally Developing Region of a Thick Walled Pipe," Journal of Mechanical Science and Technology, Vol. 20, pp. 2230-2241. https://doi.org/10.1007/BF02916340
  5. Choi, C. Y. and Balaras, E., 2009, "A Dual Reciprocity Boundary Element Formulation Using the Fractional Step Method for the Incompressible Navier-Stokes Equations," Engineering Analysis with Boundary Elements, Vol. 33, pp. 741-749. https://doi.org/10.1016/j.enganabound.2009.01.010
  6. Rokhlin, V., 1985, "Rapid Solution of Integral Equations of Classical Potential Theory," J. of Computational Physics, Vol. 60, 187-207. https://doi.org/10.1016/0021-9991(85)90002-6
  7. Greengard, L. and Rokhlin, V., 1987, "A Fast Algorithm for Particle Simulations," J. of Computational Physics, Vol. 73, pp. 325-348. https://doi.org/10.1016/0021-9991(87)90140-9
  8. Gomez, J. E. and Power, H., 1997, "A Multipole Direct and Indirect BEM for 2D Cavity Flow at Low Reynolds Number," Engineering Analysis with Boundary Elements, Vol. 19, pp. 17-31. https://doi.org/10.1016/S0955-7997(97)00021-0
  9. Yoshida, K., 2001, Applications of Fast Multipole Boundary Integral Equation Method, Ph.D Thesis, Dept. of Global Environmental Eng., Kyoto University, Japan.
  10. Koo, B.-H. and Choi, K.-I., 2006, "Mold Cooling Analysis for Injection Molding Using Fast Multipole Method," Proceedings of KSME Fall Annual Meeting, Vol. 2006, No. 11, pp. 1-6.
  11. Liu, Y. J., 2008, "A New Fast Multipole Boundary Element Method for Solving 2-D Stokes Flow Problems Based on a Dual BIE Formulation," Engineering Analysis with Boundary Elements, Vol. 32, pp. 139-151. https://doi.org/10.1016/j.enganabound.2007.07.005
  12. Ravnik, J., Hribersek, M. and Skerget, L., 2010, "Fast Multipole Boundary Element Method with Lagrangian Particle Tracking for Viscous Flows," V European Conference on Computation Fluid Dynamics, ECCOMAS CFD 2010, J.C.F. Pereira and A. Sequeira (Eds), Lisbon, Portugal, 14-17 June 2010.
  13. Bapat, M. S. and Liu, Y. J., 2010, "A New Adaptive Algorithm for the Fast Multipole Boundary Element Method," CMES, Vol. 58, No.2, PP. 161-183.
  14. Zhu, X. Y., Chen, W. Q., Huang, Z. Y., Liu, Y. J., 2011, "A Fast Multipole Boundary Element Method for 2D Viscoelastic Problems," Engineering Analysis with Boundary Elements, Vol. 35, pp. 170-178. https://doi.org/10.1016/j.enganabound.2010.05.018
  15. Liu, Y. J. and Nishimura, N., 2006, "The Fast Multipole Boundary Element Method for Potential Problems: A Tutorial," Engineering Analysis with Boundary Elements, Vol. 30, pp. 371-391. https://doi.org/10.1016/j.enganabound.2005.11.006
  16. Liu, Y. J., 2009, Fast Multipole Boundary Element Method - Theory and Applications in Engineering, Cambridge, Cambridge University Press.
  17. Choi, C.-Y., 2012, "Quad Tree Generation Algorithm for the Fast Multipole Boundary Element Method Analysis," Jeonju University J. of the Institute for Engineering and Technology, Vol. 17, No. 1, pp. 33-40.