DOI QR코드

DOI QR Code

Anthraquinone-carbamodithiolate Assembly as Selective Chromogenic Chemosensor for Fe3+

  • Bae, Jin-Seok (Department of Textile System Engineering, Kyungpook National University) ;
  • Gwon, Seon-Yeong (Department of Advanced Organic Materials Science and Engineering, Kyungpook National University) ;
  • Kim, Sung-Hoon (Department of Textile System Engineering, Kyungpook National University)
  • Received : 2013.02.21
  • Accepted : 2013.03.05
  • Published : 2013.03.27

Abstract

A new assembly derived from 2,3-dibromo-5,6,7,8-tetrafluoroquinizarin and sodium diethyl-carbamodithiolate, was prepared as an efficient $Fe^{3+}$ colorimetric chemosensor with high selectivity over other cations $Fe^{3+}$, $Na^+$, $Mg^{2+}$, $Pb^{2+}$, $Cd^{2+}$, $Ni^{2+}$, $Ca^{2+}$, $Cu^{2+}$, $Hg^{2+}$, $Zn^{2+}$ : from the dark blue to brown color change that is visible by eyes. This assembly produced large bathochromic shift of 228 nm in the presence of $Fe^{3+}$ compared with the corresponding absorption maximum of the parent dye.

Keywords

References

  1. S. Y. Kim and J. I. Hong, Chromogenic and Fluorescent Chemodosimeter for Detection of Fluoride in Aqueous Solution, Org. Lett., 9(16), 3109(2007). https://doi.org/10.1021/ol0711873
  2. A. Wiseman, "Handbook of Experimental Pharmacology XX/2 Part 2", Springer-Verlag, Berlin, pp. 48-97, 1990.
  3. Y. Z. Lv, C. R. Li, L. Guo, F. C. Wang, Y. Xu, and X. F. Chu, Triethylamine Gas Sensor Based on ZnO Nanorods Prepared by a Simple Solution Route, Sensors and Actuators B: Chemical, 141 (1), 85(2009). https://doi.org/10.1016/j.snb.2009.06.033
  4. P. D. Beer and P. A. Gale, Anion Recognition and Sensing: The State of the Art and Future Perspectives, Angew. Chem. Int. Ed., 40(3), 486 (2001). https://doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
  5. A. P. D. Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev., 97(5), 1515(1997). https://doi.org/10.1021/cr960386p
  6. B. Valeur and I. Leray, Design Principles of Fluorescent Molecular Sensors for Cation Recognition, Coor. Chem. Rev., 205(1), 3(2000). https://doi.org/10.1016/S0010-8545(00)00246-0
  7. H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, A New Trend in Rhodamine-based Chemosensors: Application of Spirolactam Ringopening to Sensing Ions, Chem. Soc. Rev., 37(8), 1465(2008). https://doi.org/10.1039/b802497a
  8. J. L. Bricks, A. Kovalchuk, C. Trieflinger, M. Nofz, M. Buschel, A. I. Tolmachev, J. Daub, and K. Rurack, On the Development of Sensor Molecules that Display Fe(III)-amplified Fluorescence, J. Am. Chem. Soc., 127(39), 13522(2005). https://doi.org/10.1021/ja050652t
  9. Z. Q. Liang, C. X. Wang, J. X. Yang, H. W. Gao, Y. P. Tian, X. T. Tao, and M. H. Jiang, A Highly Selective Colorimetric Chemosensor for Detecting the Respective Amounts of Iron(II) and Iron(III) Ions in Water, New. J. Chem., 31(6), 906(2007). https://doi.org/10.1039/b701201m
  10. M. Zhang, Y. H. Gao, M. Li, M. Yu, F. Li, L. Li, M. Zhu, J. Zhang, T. Yi, and C. H. Huang, A Selective Turn-on Fluorescent Sensor for Fe(III) and Application to Bioimaging, Tetra. Lett., 48(21), 3709(2007). https://doi.org/10.1016/j.tetlet.2007.03.112
  11. X. B. Zhang, G. Cheng, W. J. Zhang, G. L. Shen, and R. Q. Yu, A Fluorescent Chemical Sensor for $Fe^{3+}$ Based on Blocking of Intramolecular Proton Transfer of a Quinazolinone Derivative, Talanta, 71(1), 171(2007). https://doi.org/10.1016/j.talanta.2006.03.036
  12. O. Oter, K. Ertekin, R. Kilincarslan, M. Ulusoy, and B. Cetinkaya, Photocharacterization of a Novel Fluorescent Schiff Base and Investigation of its Utility as an Optical $Fe^{3+}$ Sensorin PVC Matrix, Dyes. and Pigm., 74, 730(2007). https://doi.org/10.1016/j.dyepig.2006.05.006
  13. Y. Ma, W. Luo, P. J. Quinn, Z. Liu, and R. C. Hider, Design, Synthesis, Physicochemical Properties, and Evaluation of Novel Iron Chelators with Fluorescent Sensors, J. Med. Chem., 47(25), 6349 (2004). https://doi.org/10.1021/jm049751s
  14. Y. Xiang and A. Tong, A New Rhodamine-based Chemosensor Exhibiting Selective Fe(III)-amplified Fluorescence, Org. Lett., 8(8), 1549(2006). https://doi.org/10.1021/ol060001h
  15. Y. Son and J. Park, Rhodamine 6G Based New Fluorophore Chemosensor Toward $Hg^{2+}$, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 24(3), 158(2012). https://doi.org/10.5764/TCF.2012.24.3.158
  16. H. Kim and Y. Son, Synthesis and Optical Properties of Novel Chemosensor Based on Rhodamine 6G, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 24(4), 233(2012). https://doi.org/10.5764/TCF.2012.24.4.233
  17. R. D. Marco and J. Martizano, Response of a Copper(II) and Iron(III) Ion-selective Electrode Bielectrode Array in Saline Media, Talanta, 75(5), 1234(2008). https://doi.org/10.1016/j.talanta.2008.01.018
  18. Y. F. Cheng, M. Zhang, H. Yang, F. Y. Li, T. Yi, and C. H. Huang, Azo Dyes Based on 8- hydroxyquinoline Benzoates: Synthesis and Application as Colorimetric $Hg^{2+}$ -Selective Chemosensors, Dyes. and Pigm., 76(3), 775(2008). https://doi.org/10.1016/j.dyepig.2007.01.022
  19. M. Matsuoka, S. H. Kim, and T. Kitao, Novel Syntheses of Quinone-type i.r. Dyes for Optical Recording Media, J. Chem. Soc. Chem. Commun., 17, 1195(1985).
  20. S. H. Kim, M. Matsuoka, and T. Kitao, Novel Syntheses of phenoselenazinequinone Infrared Dyes, Chem. Lett., 14, 1351(1985). https://doi.org/10.1246/cl.1985.1351
  21. S. H. Kim, M. Matsuoka, Y. Kubo, T. Yodoshi, and T. Kitao, Novel Syntheses of Anthraquinonoid Near-infrared Absorbing Dyes, Dyes. and Pigm., 7(2), 93(1986). https://doi.org/10.1016/0143-7208(86)85002-1
  22. Y. Kogo, H. Kikuchi, M. Matsuoka, and T. Kitao, Colour and Constitution of Anthraquinonoid Dyes, Part 1-Modified PPP Calculations and Substituent Effects, J. Soc. Dyers. Colour., 96(9), 475(1980).
  23. B. Delley, An All-electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules, J. Chem. Phys., 92(1), 508(1990). https://doi.org/10.1063/1.458452
  24. B. Delley, From Molecules to Solids with the $DMol^{3}$ Approach, J. Chem. Phys., 113(17), 7756 (2000). https://doi.org/10.1063/1.1316015

Cited by

  1. Particle Size, Morphology and Color Characteristics of C.I. Pigment Red 57:1 : 1. Effect of Synthesis Conditions vol.27, pp.4, 2015, https://doi.org/10.5764/TCF.2015.27.4.229
  2. Study on the Interaction between Curcumin and Ethylamines by Absorption and Fluorescence Spectroscopic Techniques vol.27, pp.4, 2015, https://doi.org/10.5764/TCF.2015.27.4.340
  3. Particle Size, Morphology and Color Characteristics of C.I. Pigment Red 57:1 : 2. Effect of Salt Milling Process vol.27, pp.4, 2015, https://doi.org/10.5764/TCF.2015.27.4.245
  4. Charge Transfer Dye Probe for Thiol-containing Amino Acid vol.27, pp.4, 2015, https://doi.org/10.5764/TCF.2015.27.4.261
  5. Study of HOMO and LUMO Energy Levels for Spirolactam Ring Moiety Using Electrochemical Approach vol.25, pp.2, 2013, https://doi.org/10.5764/TCF.2013.25.2.83
  6. Synthesis and Properties of New Phthaloperinone Dyes vol.27, pp.4, 2015, https://doi.org/10.5764/TCF.2015.27.4.275
  7. Relationship between the Molecular Structure and the Absorption Band Shape of Organic Dye vol.27, pp.4, 2015, https://doi.org/10.5764/TCF.2015.27.4.270
  8. Study of Dye Encapsulated Microcapsule Polymerization Using Polyurethane Prepolymer Synthesis and Textile Finishing vol.27, pp.3, 2015, https://doi.org/10.5764/TCF.2015.27.3.184
  9. Synthesis of Chemosensor Based on Pyrene and Study for Its Sensing Properties Toward Fluoride Ion vol.25, pp.3, 2013, https://doi.org/10.5764/TCF.2013.25.3.153