DOI QR코드

DOI QR Code

Protective Effects of Geniposide and Genipin against Hepatic Ischemia/Reperfusion Injury in Mice

  • Kim, Joonki (Natural Medicine Center, Korea Institute of Science & Technology) ;
  • Kim, Hyo-Yeon (School of Pharmacy, Sungkyunkwan University) ;
  • Lee, Sun-Mee (School of Pharmacy, Sungkyunkwan University)
  • Received : 2013.01.14
  • Accepted : 2013.02.13
  • Published : 2013.03.31

Abstract

Geniposide is an active product extracted from the gardenia fruit, and is one of the most widely used herbal preparations for liver disorders. This study examined the cytoprotective properties of geniposide and its metabolite, genipin, against hepatic ischemia/reperfusion (I/R) injury. C57BL/6 mice were subjected to 60 min of ischemia followed by 6 h of reperfusion. Geniposide (100 mg/kg) and genipin (50 mg/kg) were administered orally 30 min before ischemia. In the I/R mice, the levels of serum alanine aminotransferase and hepatic lipid peroxidation were elevated, whereas hepatic glutathione/glutathione disulfide ratio was decreased. These changes were attenuated by geniposide and genipin administration. On the other hand, increased hepatic heme oxygenase-1 protein expression was potentiated by geniposide and genipin administration. The increased levels of tBid, cytochrome c protein expression and caspase-3 activity were attenuated by geniposide and genipin. Increased apoptotic cells in the I/R mice were also significantly reduced by geniposide and genipin treatment. Our results suggest that geniposide and genipin offer significant hepatoprotection against I/R injury by reducing oxidative stress and apoptosis.

Keywords

References

  1. Akao, T., Kobashi, K. and Aburada, M. (1994) Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biol. Pharm. Bull. 17, 1573-1576. https://doi.org/10.1248/bpb.17.1573
  2. Buege, J. A. and Aust, S. D. (1978) Microsomal lipid peroxidation. Methods Enzymol. 52, 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6
  3. Cursio, R., Gugenheim, J., Ricci, J. E., Crenesse, D., Rostagno, P., Maulon, L., Saint-Paul, M. C., Ferrua, B. and Auberger, A. P. (1999) A caspase inhibitor fully protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis. FASEB J. 13, 253-261. https://doi.org/10.1096/fasebj.13.2.253
  4. Eum, H. A., Cha, Y. N. and Lee, S. M. (2007) Necrosis and apoptosis: sequence of liver damage following reperfusion after 60 min ischemia in rats. Biochem. Biophys. Res. Commun. 358, 500-505. https://doi.org/10.1016/j.bbrc.2007.04.153
  5. Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281, 1309-1312. https://doi.org/10.1126/science.281.5381.1309
  6. Hong, H. Y. and Kim, B. C. (2007) Mixed lineage kinase 3 connects reactive oxygen species to c-Jun NH2-terminal kinase-induced mitochondrial apoptosis in genipin-treated PC3 human prostate cancer cells. Biochem. Biophys. Res. Commun. 362, 307-312. https://doi.org/10.1016/j.bbrc.2007.07.165
  7. Jaeschke, H. (2006) Mechanisms of liver injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1083-1088. https://doi.org/10.1152/ajpgi.00568.2005
  8. Kang, J. J., Wang, H. W., Liu, T. Y., Chen, Y. C. and Ueng, T. H. (1997) Modulation of cytochrome P-450-dependent monooxygenases, glutathione and glutathione S-transferase in rat liver by geniposide from Gardenia jasminoides. Food Chem. Toxicol. 35, 957-965. https://doi.org/10.1016/S0278-6915(97)87265-1
  9. Khanal, T., Kim, H. G., Choi, J. H., Do, M. T., Kong, M. J., Kang, M. J., Noh, K., Yeo, H. K., Ahn, Y. T., Kang, W., Kim, D. H., Jeong, T. C. and Jeong, H. G. (2012) Biotransformation of geniposide by human intestinal microflora on cytotoxicity against HepG2 cells. Toxicol. Lett. 209, 246-254. https://doi.org/10.1016/j.toxlet.2011.12.017
  10. Koo, H. J., Lee, S., Shin, K. H., Kim, B. C., Lim, C. J. and Park, E. H. (2004a) Geniposide, an anti-angiogenic compound from the fruits of Gardenia jasminoides. Planta Med. 70, 467-469. https://doi.org/10.1055/s-2004-818978
  11. Koo, H. J., Lim, K. H., Jung, H. J. and Park, E. H. (2006) Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J. Ethnopharmacol. 103, 496-500. https://doi.org/10.1016/j.jep.2005.08.011
  12. Koo, H. J., Song, Y. S., Kim, H. J., Lee, Y. H., Hong, S. M., Kim, S. J., Kim, B. C., Jin, C., Lim, C. J. and Park, E. H. (2004b) Antiinflammatory effects of genipin, an active principle of gardenia. Eur. J. Pharmacol. 495, 201-208. https://doi.org/10.1016/j.ejphar.2004.05.031
  13. Kuo, W. H., Wang, C. J., Young, S. C., Sun, Y. C., Chen, Y. J. and Chou, F. P. (2004) Differential induction of the expression of GST subunits by geniposide in rat hepatocytes. Pharmacology 70, 15-22. https://doi.org/10.1159/000074238
  14. Lee, P., Lee, J., Choi, S. Y., Lee, S. E., Lee, S. and Son, D. (2006) Geniposide from Gardenia jasminoides attenuates neuronal cell death in oxygen and glucose deprivation-exposed rat hippocampal slice culture. Biol. Pharm. Bull. 29, 174-176. https://doi.org/10.1248/bpb.29.174
  15. Liaw, J. and Chao, Y. C. (2001) Effect of in vitro and in vivo aerosolized treatment with geniposide on tracheal permeability in ovalbumin-induced guinea pigs. Eur. J. Pharmacol. 433, 115-121. https://doi.org/10.1016/S0014-2999(01)01506-0
  16. Liu, J., Yin, F., Zheng, X., Jing, J. and Hu, Y. (2007) Geniposide, a novel agonist for GLP-1 receptor, prevents PC12 cells from oxidative damage via MAP kinase pathway. Neurochem. Int. 51, 361-369. https://doi.org/10.1016/j.neuint.2007.04.021
  17. Liu, J. H., Yin, F., Guo, L. X., Deng, X. H. and Hu, Y. H. (2009) Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: involvement of PI3 kinase signal pathway. Acta Pharmacol. Sin. 30, 159-165. https://doi.org/10.1038/aps.2008.25
  18. Ma, T., Huang, C., Zong, G., Zha, D., Meng, X., Li, J. and Tang, W. (2011) Hepatoprotective effects of geniposide in a rat model of nonalcoholic steatohepatitis. J. Pharm. Pharmacol. 63, 587-593. https://doi.org/10.1111/j.2042-7158.2011.01256.x
  19. Marubayashi, S., Dohi, K., Ochi, K. and Kawasaki, T. (1987) Protective effects of free radical scavenger and antioxidant administration on ischemic liver cell injury. Transplant. Proc. 19, 1327-1328.
  20. Morin, D., Pires, F., Plin, C. and Tillement, J. P. (2004) Role of the permeability transition pore in cytochrome C release from mitochondria during ischemia-reperfusion in rat liver. Biochem. Pharmacol. 68, 2065-2073. https://doi.org/10.1016/j.bcp.2004.07.006
  21. Peng, C. H., Huang, C. N. and Wang, C. J. (2005) The anti-tumor effect and mechanisms of action of penta-acetyl geniposide. Curr. Cancer Drug Targets 5, 299-305. https://doi.org/10.2174/1568009054064633
  22. Sasaki, H., Matsuno, T., Ishikawa, T., Ishine, N., Sadamori, H., Yagi, T. and Tanaka, N. (1997) Activation of apoptosis during early phase of reperfusion after liver transplantation. Transplant. Proc. 29, 406-407. https://doi.org/10.1016/S0041-1345(96)00138-8
  23. Shang, Y., Liu, Y., Du, L., Wang, Y., Cheng, X., Xiao, W., Wang, X., Jin, H., Yang, X., Liu, S. and Chen, Q. (2009) Targeted expression of uncoupling protein 2 to mouse liver increases the susceptibility to lipopolysaccharide/galactosamine-induced acute liver injury. Hepatology 50, 1204-1216. https://doi.org/10.1002/hep.23121
  24. Suzuki, Y., Kondo, K., Ikeda, Y. and Umemura, K. (2001) Antithrombotic effect of geniposide and genipin in the mouse thrombosis model. Planta Med. 67, 807-810. https://doi.org/10.1055/s-2001-18842
  25. Tietze, F. (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27, 502-522. https://doi.org/10.1016/0003-2697(69)90064-5
  26. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B. and Korsmeyer, S. J. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727-730. https://doi.org/10.1126/science.1059108
  27. Xu, M., Sun, Q., Su, J., Wang, J., Xu, C., Zhang, T. and Sun, Q. (2008) Microbial transformation of geniposide in Gardenia jasminoides Ellis into genipin by Penicillium nigricans. Enzyme Microb. Technol. 42, 440-444. https://doi.org/10.1016/j.enzmictec.2008.01.003
  28. Yin, F., Liu, J., Zheng, X., Guo, L. and Xiao, H. (2010) Geniposide induces the expression of heme oxygenase-1 via PI3K/Nrf2-signaling to enhance the antioxidant capacity in primary hippocampal neurons. Biol. Pharm. Bull. 33, 1841-1846. https://doi.org/10.1248/bpb.33.1841
  29. Yu, H. C., Qin, H. Y., He, F., Wang, L., Fu, W., Liu, D., Guo, F. C., Liang, L., Dou, K. F. and Han, H. (2011) Canonical Notch pathway protects hepatocytes from ischemia/reperfusion injury in mice by repressing reactive oxygen species production through JAK2/STAT3 signaling. Hepatology 54, 979-988. https://doi.org/10.1002/hep.24469
  30. Yun, N., Eum, H. A. and Lee, S. M. (2010) Protective role of heme oxygenase-1 against liver damage caused by hepatic ischemia and reperfusion in rats. Antioxid. Redox Signal. 13, 1503-1512. https://doi.org/10.1089/ars.2009.2873

Cited by

  1. Genipin attenuates sepsis-induced immunosuppression through inhibition of T lymphocyte apoptosis vol.27, pp.1, 2015, https://doi.org/10.1016/j.intimp.2015.04.034
  2. Apoptotic Effect of Geniposide on Fibroblast-Like Synoviocytes in Rats with Adjuvant-Induced Arthritis via Inhibiting ERK Signal Pathway In Vitro vol.39, pp.1, 2016, https://doi.org/10.1007/s10753-015-0219-9
  3. Gypenoside attenuates hepatic ischemia/reperfusion injury in mice via anti-oxidative and anti-apoptotic bioactivities vol.7, pp.5, 2014, https://doi.org/10.3892/etm.2014.1569
  4. Geniposide Suppresses Hepatic Glucose Production via AMPK in HepG2 Cells vol.39, pp.4, 2016, https://doi.org/10.1248/bpb.b15-00591
  5. Using Light Microscopy and Liquid Chromatography Tandem Mass Spectrometry for Qualitative and Quantitative Control of a Combined Three-Herb Formulation in Different Preparations vol.21, pp.12, 2016, https://doi.org/10.3390/molecules21121673
  6. Geniposide protects against acute alcohol-induced liver injury in mice via up-regulating the expression of the main antioxidant enzymes vol.93, pp.4, 2015, https://doi.org/10.1139/cjpp-2014-0536
  7. Protective effects ofHammada scopariaflavonoid-enriched fraction on liver injury induced by warm ischemia/reperfusion vol.53, pp.12, 2015, https://doi.org/10.3109/13880209.2015.1010737
  8. Genipin protects d -galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the necroptosis-mediated inflammasome signaling vol.812, 2017, https://doi.org/10.1016/j.ejphar.2017.07.024
  9. Enhancement of active compound, genipin, from Gardeniae Fructus using immobilized glycosyl hydrolase family 3 β-glucosidase from Lactobacillus antri vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0360-y
  10. Genipin alleviates sepsis-induced liver injury by restoring autophagy vol.173, pp.6, 2016, https://doi.org/10.1111/bph.13397
  11. Simultaneous quantification method for comparative pharmacokinetics studies of two major metabolites from geniposide and genipin by online mircrodialysis-UPLC–MS/MS vol.1041-1042, 2017, https://doi.org/10.1016/j.jchromb.2016.12.010
  12. Paeoniflorin attenuates hepatic ischemia/reperfusion injury via anti-oxidative, anti-inflammatory and anti-apoptotic pathways vol.11, pp.1, 2016, https://doi.org/10.3892/etm.2015.2902
  13. A Traditional Chinese Medicine Shaoyao Ruangan Heji Ameliorates Carbon Tetrachloride-induced Liver Injury Through Multiple Stress and Toxicity Pathways vol.12, pp.4, 2016, https://doi.org/10.3923/ijp.2016.317.328
  14. Synergistic effects of rhubarb-gardenia herb pair in cholestatic rats at pharmacodynamic and pharmacokinetic levels vol.175, 2015, https://doi.org/10.1016/j.jep.2015.09.012
  15. Genipin protects the liver from ischemia/reperfusion injury by modulating mitochondrial quality control vol.328, 2017, https://doi.org/10.1016/j.taap.2017.05.002
  16. Genipin attenuates cisplatin-induced nephrotoxicity by counteracting oxidative stress, inflammation, and apoptosis vol.93, 2017, https://doi.org/10.1016/j.biopha.2017.07.018
  17. Geniposide and geniposidic acid, modified forms of genipin, attenuate genipin-induced mitochondrial apoptosis without altering the anti-inflammatory ability in KGN cell line vol.26, pp.2, 2017, https://doi.org/10.1007/s00044-016-1765-x
  18. Preclinical Pharmacokinetics of Scoparone, Geniposide and Rhein in an Herbal Medicine Using a Validated LC-MS/MS Method vol.23, pp.10, 2018, https://doi.org/10.3390/molecules23102716
  19. The Pharmacological Targets and Clinical Evidence of Natural Products With Anti-hepatic Inflammatory Properties vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00455
  20. Sitagliptin-Dependent Differences in the Intensity of Oxidative Stress in Rat Livers Subjected to Ischemia and Reperfusion vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/2738605
  21. Protective Role of mTOR in Liver Ischemia/Reperfusion Injury: Involvement of Inflammation and Autophagy vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/7861290
  22. 3,3′-Diindolylmethane mitigates lipopolysaccharide-induced acute kidney injury in mice by inhibiting NOX-mediated oxidative stress and the apoptosis of renal tubular epithelial cells vol.19, pp.6, 2013, https://doi.org/10.3892/mmr.2019.10178
  23. Geniposide, a Principal Component of Gardeniae Fructus, Protects Skin from Diesel Exhaust Particulate Matter-Induced Oxidative Damage vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/8847358
  24. Geniposide Improves Diabetic Nephropathy by Enhancing ULK1-Mediated Autophagy and Reducing Oxidative Stress through AMPK Activation vol.22, pp.4, 2013, https://doi.org/10.3390/ijms22041651
  25. Gardeniae Fructus Attenuates Thioacetamide-Induced Liver Fibrosis in Mice via Both AMPK/SIRT1/NF-κB Pathway and Nrf2 Signaling vol.10, pp.11, 2021, https://doi.org/10.3390/antiox10111837